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Econometric considerations when using the 
net benefit regression framework to 
conduct cost-effectiveness analysis

Abstract

This chapter considers the analysis of a cost-effectiveness dataset from an econometrics perspective. We 
link cost-effectiveness analysis to the net benefit regression framework and explore insights and 
opportunities from econometrics and their practical implications. As an empirical illustration, we compare 
various econometric techniques using a cost-effectiveness dataset from a published study. The chapter 
concludes with a discussion about implications for applied practitioners and future research directions.
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1.0 Introduction

Healthcare costs are an important consideration for policy advisors and decision makers.  Costly 
innovations are arriving at an increasing rate, and there is concern about how to spend limited healthcare 
budgets. Most countries throughout the world use a health technology assessment process to help inform 
their healthcare funding decisions. Economic evidence is an important part of this, and cost-effectiveness 
analysis is one of the most popular economic evaluation techniques used to inform healthcare spending 
decisions.  

Two types of cost-effectiveness analysis involve creating decision models (using data from 
multiple sources) or estimating statistical models (using data from a single dataset). Statistical cost-
effectiveness analysis has many intriguing features for those interested in theoretical and applied 
econometrics. The analyst generally has a small dataset of N study participants of whom n1 received a 
new treatment (or intervention) and n0 received usual care (where N = n1 + n0). At a minimum, each 
observation i provides a data triplet of cost (ci), outcome or effectiveness (ei) and a treatment indicator 
(txi).  A sample consists of two sets {(ci, ei, txi = 1) : i = 1 to n1} and {(ci, ei, txi = 0) : i = 1 to n0}.  Typically, ci 
and ei are assumed to be jointly distributed, potentially correlated dependent variables.  Many times the 
data come from a randomized controlled trial where it is typical to assume that covariates (Xi) are not 
associated with the treatment allocation.  For cost-effectiveness analysis, the analyst must produce 
functions of the estimates of E(c | tx = 1), E(e | tx = 1), E(c | tx = 0) and E(e | tx = 0). The key econometric 
questions involve 1) what is the best way to obtain the estimates of the functions of these moments and 
2) how best should their uncertainty be characterized.  

We explore these questions in this chapter.  After providing additional background on statistical 
cost-effectiveness, we consider questions about estimation and uncertainty next and then subsequently 
illustrate findings with an empirical example. We conclude with a discussion about implications for applied 
practitioners and future research directions.

2.0 Background

2.1 The incremental cost-effectiveness ratio (ICER)
Most health technology assessment processes throughout the world require partial results from a 
constrained optimization problem.  The academic rationale for this appears to be related to viewing the 
fixed healthcare budget as a constraint (i.e., the amount of money that can be spent is limited) and viewing 
the objective in healthcare to be maximizing the population’s health.  Thus, when considering which 
healthcare treatments to reimburse, a healthcare payer is assumed to face the following problem:  

Choose the optimal levels of funding (i.e.,  going from 0 – 100%) of M Treatments (i.e., 
i for i = 1 to M), assuming the i’s have health outcomes of i

o and costs of i
c with an 

objective of maximizing ii
o within a fixed budget of  (i.e., ii

c < ).  
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Weinstein and Zeckhauser (1973) showed the optimal decision rule is equivalent to funding new 
treatments or interventions when the ratio of the extra cost (C) to the extra health outcome or 
effectiveness (E) is less than a willingness to pay threshold ().  In other words, decision makers should 
fund a new treatment if C/E <  (when E > 0).  The incremental cost-effectiveness ratio (C/E) has 
played a major role in cost-effectiveness analysis based on this stylized version of how decision makers 
are assumed to behave.  Nevertheless, some methodological and practical challenges attend the use of 
the incremental cost-effectiveness ratio (ICER).

While the goal of cost-effectiveness analysis is to understand the trade-off between C and E, 
results from Weinstein and Zeckhauser (1973) appear to impose that this tradeoff should be estimated as 
a ratio (the ICER); however, ratios can be challenging to estimate.  For example, if one denotes the 
population expected values of cost and effectiveness for txi = 0 and 1 as μc0, μe0, μc1 and μe1, respectively, 
then the population ICER statistic is defined as R  (μc1 − μc0) / (μe1 − μe0) or simply C /E.  With a cost-
effectiveness dataset, one can replace the population parameters with their sample analogues (i.e., 
replace population cost and effectiveness expectations with the sample cost and effectiveness averages). 
However, the common estimate of the ICER, the ratio of the differences in the sample means of cost and 
effectiveness 

(1)   =   𝑅 =
𝑐1 ‒ 𝑐0

𝑒1 ‒ 𝑒0

𝜇∆𝐶

𝜇∆𝐸

is biased. That is, E( )  R and this divergence is inversely related to the unknown parameter E.  In 𝑅
addition, the 95% confidence interval for (1) is not trivial to compute.  A parametric solution is sometimes 
available through Fieller’s theorem which involves solving

(2)   
𝜇 2

∆𝐶 + 𝑅2𝜇 2
∆𝐸 

‒ 2𝑅𝜇 2
∆𝐸𝜇∆𝐶

𝑅2𝑉𝑎𝑟(𝜇∆𝐸) + 𝑉𝑎𝑟(𝜇∆𝐶) ‒ 2𝑅𝐶𝑜𝑣(𝜇∆𝐸,𝜇∆𝐶)
= 𝑧 2

𝛼/2

for R, where z/2 is the /2 percentile of the standard normal cumulative distribution function. This 
equation can be a source of difficulties for applied practitioners who cannot always expect to be able to 
calculate an upper and lower 95% confidence interval (sometimes because of calculations errors, 
sometimes because of imaginary roots and sometimes because of both).  Bootstrapping can serve as an 
alternative approach.  However, Siani et al (2000) show that Fieller’s method can perform better than 
bootstrap methods that become unstable or even inapplicable when the difference between average 
effects approaches zero statistically (i.e., E  0).  Severens et al (1999) state that both the Fieller and 
bootstrap methods lead to “unsatisfactory results” when the difference in effectiveness is approximately 
zero (i.e., E  0).1 

1 A natural alternative is to consider using a Taylor series approximation of the variance of a function of two 
random variables (often termed the Delta method) to estimate the variance of the ICER. Success in this endeavor 
allows one to use standard parametric assumptions to produce a confidence interval of the form   z/2 var( )½. 𝑅 𝑅
Briggs and Fenn (1998) note that "a high coefficient of variation for the denominator of the ratio (i.e. a non-
negligible probability of observing a zero value) means that the sampling distribution of the ICER is likely to be non-
normal and that the Taylor series will give a poor estimate of variance (Armitage and Berry, 1994)." Moreover, van 
Hout et al note the ratio of two normal distributed variables (e.g., C/ E) has neither a finite mean nor a finite 
variance, and one of the consequences is that using a Taylor approximation to calculate 95% confidence limits is 
formally incorrect.
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Last but not least, there is the delicate issue of what to do about . Decision makers are, in theory, 
considering whether to fund a new treatment based on whether C/E < , where λ represents the 
willingness to pay for an additional health outcome or unit of effectiveness. If  < λ when E > 0, then the 𝑅
new treatment or intervention is described as “cost-effective”. Estimates of C and E come from the 
data; an actual number for  requires a value judgment from the decision maker.  Providing an estimate 
for R without putting it into context in relation to  seems incomplete and does not facilitate researchers 
making policy recommendations.  While it is difficult to comment on whether R <  without formally 
considering  in the analysis,  is generally unknown and  is a biased estimate with a tricky confidence 𝑅
interval. The incremental net benefit approach represents an attractive alternative (Stinnett and Mullahy, 
1998; Tambour et al., 1998).

2.2 The incremental net benefit (INB)
The incremental net benefit (INB) addresses two statistical problems with conducting estimation of and 
inference on the ICER (i.e., that  is a biased estimate of the ICER and that 95% confidence intervals are 𝑅
often difficult to construct or interpret2). When using the INB for cost-effectiveness analysis, both 
estimation and inference are greatly simplified, since the INB estimate

(3)   =   𝐵 = 𝜆(𝑒1 ‒ 𝑒0) ‒ (𝑐1 ‒ 𝑐0) 𝜆 ∙ 𝜇∆𝐸 ‒ 𝜇∆𝐶

is a linear function. As E( ) = B   E - C,  made from sample means is unbiased.3  In addition, the 𝐵 𝐵
95% CIs can be made in the standard way as   z/2  where𝐵 𝑉𝑎𝑟(𝐵)

 (4) Var( ) = .𝐵 𝜆2𝑉𝑎𝑟(𝜇∆𝐸) +  𝑉𝑎𝑟(𝜇∆𝐶) ‒ 2𝜆 ∙ 𝐶𝑜𝑣(𝜇∆𝐸,𝜇∆𝐶)

 can be calculated by using the sample estimates for variances (Var) and covariance (Cov) in 𝑉𝑎𝑟(𝐵)
equation (4). Alternatively,  and the associated 95% CI can be obtained directly from net benefit 𝐵
regression, as discussed shortly.  Of course, λ must be specified; however, this is also true for any decision 
based on the ICER because treatment is only deemed “cost-effective” if R < λ. Thus, one cannot avoid 
specifying λ, which plays an implicit role in the ICER approach and an explicit role in the INB approach.

Because of the tautology that > 0 whenever  < λ, both their estimates and uncertainty are 𝐵 𝑅
intimately connected. When the willingness to pay value  is set equal to , then = 0.  Also, the upper 𝑅 𝐵 
and lower 95% CIs for the INB are related to the Fieller 95% CI for the ICER.  A graph of  by  has a y-𝐵
intercept equal to -C, a slope of E and an x-intercept of  (see Figure 1).  The addition to the graph of 𝑅
95% CIs for the INB can illustrate, at their x-intercepts, the lower and upper 95% Fieller CIs for the ICER 
(see Figure 1).

2 This especially true when either 1) dealing with ICERs < 0 or 2) characterizing uncertainty when C and/or E are 
not significantly different from 0.
3 E( ]  =  ] = .𝐵) = 𝐸( E ‒  C) = 𝐸[𝜆(𝑒1 ‒ 𝑒0) ‒ (𝑐1 ‒ 𝑐0) λ𝐸[(𝑒1 ‒ 𝑒0)] ‒ 𝐸[(𝑐1 ‒ 𝑐0) 𝜆 ∙ 𝜇∆𝐸 ‒ 𝜇∆𝐶
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2.3 The net benefit regression framework (NBRF)
The NBRF is a regression framework for the net benefit approach (Hoch et al, 2002).  Under this 
framework, each subject’s net benefit, nbi, is defined as nbi  ei · λ − ci using the observed data on ei and 
ci, the effectiveness and cost data for person i. If nbi > 0, then the benefits (in $) outweigh the costs (in $) 
for person i.  If E(B | tx = 1) > E(B | tx = 0), then the net benefits from new treatment outweigh the net 
benefits from usual care, overall.  This comparison can be made with sample data by comparing 

/n1 to /n0.  The NBRF places this comparison in a regression framework.∑𝑖 = 1 𝑡𝑜 𝑛1
nb𝑖 ∑𝑖 = 1 𝑡𝑜 𝑛0

nb𝑖

In its simplest form, the NBRF involves fitting the following regression model nbi = β0 + βtx txi + εi 
where txi and εi are the ith person’s treatment indicator and stochastic error term, respectively. The 
regression is typically fit several times, each time with a different λ value (e.g., a small, medium and large 
value and Figure 1 shows which values of  make intuitive sense to consider when illustrating INB). The 
regression can be enhanced with a vector of subject characteristics (Xi) to improve the efficiency of the β 
estimates (as illustrated in Section 3). In addition, interaction terms (e.g., Xi  txi) or stratification can be 
used to test for patient subgroups for whom the cost-effectiveness of a treatment varies with 
membership. When it was originally proposed, Hoch et al (2002) suggested Ordinary Least Squares (OLS) 
to produce β estimates.  The OLS estimate of βtx equals the difference in the average NB for tx = 1 and 0.  

This difference is the INB since  = E - C  INB.  If   is > 0, the new 𝛽𝑂𝐿𝑆
𝑡𝑥 = (𝜆𝑒1 ‒ 𝑐1) ‒ (𝜆𝑒0 ‒ 𝑐0) 𝛽𝑂𝐿𝑆

𝑡𝑥

treatment is cost-effective; if   < 0, the new treatment is not cost-effective. Thus, with a simple OLS 𝛽𝑂𝐿𝑆
𝑡𝑥

regression, one can assess a new treatment or intervention’s cost-effectiveness through the INB’s 
estimate and uncertainty, as indicated by what the data tell us about βtx.

In the NBRF, one can separate the regression equation nbi = β0 + βtx txi + εi into cost and effectiveness 
parts; e.g., ci = 0 + tx txi + vi and ei = 0 + tx txi + ui.  It is possible to verify that =    -   =  and 𝐵 ξtx αtx βtx

 =  / . The NBRF allows the exploration of a system of equations (i.e., one for ci and one for ei). While R αtx ξtx
the NBRF solves many problems, questions still remain: 

 What is the best way to estimate the INB (e.g., are more complex methods needed or helpful)? 
 Should the ci and the ei equations be estimated as a system of simultaneous equations or as a 

single net benefit regression equation?  
 What are the best methods to use for estimation and uncertainty?

3.0 Methods

3.1 Criticisms of the net benefit regression framework
Two critical issues related to using OLS to estimate the INB with a net benefit regression approach are 
that 1) the distribution of  may not be well suited for OLS4 and 2) not all covariates in X may be in both 
the cost and effectiveness equations.  This section considers these issues in an econometric framework.

4 Common concerns include skewness and/or heteroscedasticity. 
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We assume a cost-effectiveness dataset composed of a sample of cost and effectiveness data for 
patients receiving either new treatment (tx = 1) or usual care (tx = 0), drawn from a data generating 
process with a general bivariate distribution 

(𝑐𝑖,𝑡𝑥
𝑒𝑖,𝑡𝑥)~((𝜇𝑐𝑡𝑥

𝜇𝑒𝑡𝑥
) , ( 𝜎 2

𝑐𝑡𝑥
𝜎𝑐𝑡𝑥𝑒𝑡𝑥

𝜎𝑐𝑡𝑥𝑒𝑡𝑥
𝜎 2

𝑒𝑡𝑥
))

where i = 1 to ntx.5  The regression equations of interest can be presented in a general way:

(5.1) ci = 0 + tx txi + x Xi
c + vi

(5.2) ei = 0 + tx txi + x Xi
e + ui

(5.3) nbi () = β0 + βtx txi + x Xi + εi.

To emphasizes the fact that nbi is a function of , equation (5.3) is written as nbi ().  The vector of 
covariates in the cost equation Xi

c may differ from the vector of covariates in the effectiveness equation 
Xi

e.6  Note that the vector of covariates may contain interaction terms (e.g., the product of a patient 
characteristic xi and the treatment indicator txi).  

Willan et al. (2004) proposed the use of a system of seemingly unrelated regression (SUR) 
equations to estimate the coefficients in equations (5.1) and (5.2) as it does not require that the set of 
independent variables for costs and effectiveness be the same (i.e., it allows Xi

c   Xi
e).7  However, they 

also observed that it was possible for interaction term estimates of ,  or both to be not statistically 
significant but the additional test of the hypothesis    -  = 0 is required to determine if there is a 
significant interaction between the variable in question and the treatment group. In addition, they noted 
that if the covariates for cost and effectiveness in equations (5.1) and (5.2) are the same (i.e., Xi

c  = Xi
e), 

then SUR estimates and uncertainty measures for equations (5.1) and (5.2) match those of OLS.  And, 
these are related to OLS estimates of (5.3) in the form of  = . Lastly, they observed that if Xi

c   β λ ∙ ξ ‒ α
Xi

e, efficiency gains over OLS are possible.

In their empirical example, Willan et al. (2004) explore the case of Xi
c   Xi

e = 0, and from a 
histogram of the residuals in the cost equation, they found evidence of skewing. They addressed concerns 
about the residual’s distribution not being well suited for OLS by conducting simulations showing the 
robustness of OLS in the presence of right-skewing, in particular for cost data that are log-normal.  

5 There will be n0 participants receiving usual care and n1 receiving new treatment with the total sample size being 
equal to N = n1 + n0.
6 The covariate txi is always in both the cost and effectiveness regression equations, and the covariate vectors Xi, 
Xi

c and Xi
e contain any other covariates.

7 The claim is that estimating equation (5.3) is consistent with assuming that each variable in X is also in equations 
(5.1) and (5.2), and with a variable x_c assumed to be in Xc but not in Xe, piecewise estimates of INB like   -   ξtx αtx
will be more accurate than the single equation estimate of tx, unless x_c = 0.
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3.1 Critique of seemingly unrelated regression (SUR) in CEA
It is possible that SUR is not the optimal choice for estimation and uncertainty either in general or in the 
case that Willan et al (2004) consider:

(6.1) ci = 0 + tx txi + x Xi
conly + vi

(6.2) ei = 0 + tx txi + ui

In addition, it is not clear how Xi
conly, the variables that appear in the cost equation but not the effectiveness 

equation, should be considered.8  For example, they could be constrained in a simultaneous system of 
equations involving a net benefit regression equation like 

(6.3) nbi () = β0 + βtx txi + x Xi + εi.

Given the intimate relationship between OLS, SUR, and Generalized Method of Moments (GMM), it is 
natural to consider GMM in this scenario.  While SUR may be better than OLS because it imposes a 
particular data structure, GMM may be better than SUR because it does so in an optimal fashion.

3.2 An overview of Generalized Method of Moments (GMM) 
GMM is a family of methods for which SUR and OLS are special cases.  We briefly illustrate this by 
considering a three-equation regression system of the form:

Y = Z + , 

where 

Y = , Z = ,  = ,  = ( 𝐜
𝐞

𝐧𝐛(λ)) (𝐗c 𝟎 𝟎
𝟎 𝐗e 𝟎
𝟎 𝟎 𝐗) (𝛂

𝛏
𝛃) (𝐯

𝐮
𝛆)

and 0 represents a matrix of appropriate dimensions in which all elements are zero. By construction, nbi 
() = ei – ci, which implies that Xi is the union of Xc

i and Xe
i.  The SUR assumption requires Xi to be 

orthogonal to the error term in each equation.  The following moment conditions are therefore satisfied 
by assumption:

E[gi( )]  E  = 0.[v𝑖𝐗𝑖
u𝑖𝐗𝑖
ε𝑖𝐗𝑖

]
Because of the way nbi () is defined, i = ui – vi. The third vector of moment conditions is collinear with 
the first two.  It is impossible to estimate the model without imposing restrictions on the parameters.  An 
easy way to do so is to estimate the system composed of any two equation and obtain the third using the 
linear relationship between the three dependent variables (i.e., c, e and nb).  

8 More general is the case where vectors like Xi
conly and Xi

eonly exist and there are some variables that only appear in 
the cost equation and some that only appear in the effectiveness equation.
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To introduce the GMM method, we will consider the first two equations,9 redefining the above 
matrices to be

 = ,  = ,  = ,  = .(𝐜
𝐞) (𝐗c 0

0 𝐗𝑒) (𝛂
𝛏) (𝐯

𝐮)
Also, let gi( ) = i  Xi = {iXi, uiXi} be the moment function (where  is the Kronecker product).  Then 
the GMM estimator is defined as the vector  that makes the sample moment gn( ) = (1/n) i=1 to n gi( ) 𝜃
as close as possible to its population value which is zero by the SUR assumption. More precisely, the GMM 
estimator is defined as 

,𝜃(𝐖) = argmin
𝜃

g𝑛(𝜽)'𝐖g𝑛(𝜽)

where  is a possibly random weighting matrix that converges to a non-random and positive definite 𝐖
matrix W.  If the SUR assumption and other regularity conditions are satisfied, the GMM estimator is 
consistent for all .𝐖

However, the choice of  impacts the efficiency of the estimate.  The efficiency bound is reached 𝐖
when  converges to the inverse of the asymptotic variance of , which we define as S. Since the 𝐖 𝑛 𝑔𝑛(𝜽)
estimation of the optimal W depends on , the GMM estimator is often obtained in two steps.  First, we 
obtain a consistent vector of estimates using a fixed W (e.g., the identity matrix), then we compute an 𝜽 
estimate of the covariance matrix of the sample moments, .  The efficient GMM estimate is then 𝐒(𝜽)
obtained by replacing  by   to arrive at𝐖 𝐒(𝜽) ‒ 1

.𝜽[𝐒(𝜽) ‒ 1] = argmin
𝜃

g𝑛(𝜽)'𝐒(𝜽) ‒ 1𝑔𝑛(𝜽)

The way we compute depends on assumptions about the variance I which we define as an 𝐒(𝜽) 
n  2 matrix with the ith row being . If we assume conditional homoscedasticity, implying that{v𝑖,u𝑖}

E(i i | Xi) =   ,[ 𝑉𝑎𝑟(v𝑖) 𝐶𝑜𝑣(v𝑖,u𝑖)
𝐶𝑜𝑣(v𝑖,u𝑖) 𝑉𝑎𝑟(u𝑖) ]

9 To simplify exposition, the covariate txi is assumed to be part of the covariate vectors X, Xc and Xe. The vector of 
parameters   can be estimated by OLS, SUR or GMM. When the vector of covariates in the cost equation is the same 
as those in the effectiveness equation (Xc = Xe), there is no gain from joint estimation (Fiebig, 2001).  In our case 
study, we face a case where Xc  Xe suggesting the use of SUR on two fronts: first to gain efficiency in estimation by 
combining information on the different equations, and second to impose and/or test restrictions that involve 
parameters in different equations (Moon and Perron, 2006).  However, efficient estimators propagate 
misspecification and inconsistencies across equations, so if any equation is misspecified, then the entire coefficient 
vector will be inconsistently estimated by efficient methods (Moon and Perron, 2006). In this sense, equation-by-
equation OLS provides some degree of robustness since it is not affected by misspecification in other equations in 
the system (Moon and Perron, 2006).  Although efficient GMM is not better than SUR regarding the propagation of 
misspecification across equations, it does provide additional benefits.
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then =   [XX/n], with   = /n and the GMM estimates are identical to those using SUR. 𝐒(𝜽)   '
However, if we are not willing to make such a restrictive assumption, we can use the following 
heteroscedasticity consistent estimator:

= .𝐒(𝜽) 
1
𝑛

∑𝑛
𝑖 = 1( v2

𝑖𝐗𝑖𝐗
'
𝑖 v𝑖u𝑖𝐗𝑖𝐗

'
𝑖

v𝑖u𝑖𝐗𝑖𝐗
'
𝑖 u2

𝑖𝐗𝑖𝐗
'
𝑖

)
In order to compare SUR and GMM, it helps to compare the covariance matrix of the GMM versus 

the efficient GMM estimator.10 In general, we have 

 –  ]  N[0, V(W)] 𝑛 [𝜽(𝐖)

where 

V(W) = [GWG]-1GWSWG[GWG]-1

with

G = .(E(𝐗c
𝑖𝐗

'
𝑖) 0

0 E(𝐗e
𝑖𝐗

'
𝑖))

If converges to S-1 then V(W) = V(S-1) = [GS-1G]-1.𝐖 

3.3 The relationship between GMM, SUR and OLS
SUR corresponds to efficient GMM under the assumption that 

E(i i | Xi) =   .[ 𝑉𝑎𝑟(v𝑖) 𝐶𝑜𝑣(v𝑖,u𝑖)
𝐶𝑜𝑣(v𝑖,u𝑖) 𝑉𝑎𝑟(u𝑖) ]

In the presence of heteroscedasticity, SUR is less efficient than efficient GMM.  Furthermore, in that case, 
the SUR covariance matrix should be a consistent estimate of V(W), where 

W = -1  E(Xi Xi)-1  S-1.11 

There is also a relationship between OLS and GMM.  In the simplest case in which Xe = Xc = X, the 
model is just (or exactly) identified. The weighting matrix plays no role since  is simply the solution to 𝜽
the linear system of equations gn( ) = 0.  It is easy to show that the solution is identical to the equation 
by equation OLS estimate, since the linear system of equations gn( ) = 0 are the OLS first order conditions, 
in this case.  As such, there is no gain from using GMM or SUR; they only differ by the choice of which 𝐖 
no longer affects the solution. 

However, a key point is that we can use the GMM setup to test restrictions involving parameters 
from different equations.  In fact, we can show that the asymptotic variance of the GMM estimator in the 
simple case of Xe = Xc = X is V(W) = G-1SG-1.12 It is therefore possible to obtain confidence intervals for  𝐵

10 For complete coverage of GMM for systems of equations, see Hayashi (2000).
11 These are asymptotic results. In finite samples, the relative efficiency of GMM over SUR or OLS is unclear.
12 We kept the argument W in the V() even though it plays no role in the just identified case.
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even though the coefficients come from different equations. Again, S can be estimated by either a non-
robust or a robust covariance matrix.  It is also possible to show that when setting 

=   (XiXi/n), 𝐖 
‒ 1

where is diagonal, then GMM is identical to equation by equation OLS. In other words, OLS equation by  
equation is GMM with the SUR, homoscedasticity and no correlation between the error terms 
assumptions.  As a corollary, by not imposing that be diagonal, but instead assuming 

S =   E(XiXi) 

with  being diagonal, then SUR and efficient GMM are asymptotically identical to equation by equation 
OLS.  

A final important issue to be aware of regarding the estimation of a system of equations as a 
whole is that in order for the efficient GMM or SUR procedures to produce consistent estimates, all 
equations must be correctly specified.  Suppose, for example, that one regressor in Xc but not in Xe was 
correlated with ui (the error term for the effect equation) but not with vi (the error term for the cost 
equation).  Then, one of the moment conditions E(ui Xi) = 0 would not be satisfied.  As a result, the 
equation by equation OLS estimates would be consistent, but the efficient GMM or SUR would not.   In 
fact, the violation of one moment condition in one equation can contaminate all equations.  OLS is 
therefore more robust to misspecification (Moon and Perron, 2006).  

4.0 Case study
This section describes the empirical example and motivates the methods we use.

4.1 Background on the study
The Program in Assertive Community Treatment is one of the most studied models of care for persons 
with severe and persistent mental illnesses (SPMI) (Stein and Test, 1980; Olfson, 1990; Burns and Santos, 
1995; Scott and Dixon 1995). Lehman et al. (1999) found that an assertive community treatment (ACT) 
program, relative to usual community services, reduced days homeless for homeless persons with SPMI 
in Baltimore, Maryland (USA). The study’s rationale was that by providing potentially more expensive but 
coordinated, community-based care through the ACT program, homeless persons with SPMI would spend 
more days in stable community housing with savings realized by shifting the patterns of care from higher 
cost crisis-oriented inpatient and emergency services to lower cost, ongoing ambulatory services. The 
results suggest that in the city of Baltimore, ACT was effective in achieving important outcomes warranting 
an examination of the cost-effect trade-off. Lehman et al. (1999) conducted an economic evaluation of 
the ACT program as it was implemented.  An analysis of the cost-effectiveness dataset by Hoch et al (2002) 
used net benefit regression.  The same dataset was analyzed by Willan et al (2004) using SUR. The analysis 
that we report next presents OLS, SUR and GMM results.

4.2 Background on the data
Direct treatment costs across the one year intervention period were examined from the perspective of 
the state mental health authority. Housing status was chosen as the main effectiveness. A day of stable 
housing was defined as living in a non-institutionalized setting not intended to serve the homeless (e.g., 
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independent housing, living with family, etc.). Subjects randomized to the comparison usual care 
condition had access to services usually available to homeless persons in the city of Baltimore. Lehman et 
al. (1999) offer more detail about the study. Cost-effectiveness analyses of these data have used the 
complete data on 73 participants randomly assigned to the ACT program (tx = 1) and 72 randomly assigned 
to usual care services (tx = 0).

An unusual feature of the sample data is that while the two treatment groups appeared comparable with 
respect to most covariates (e.g., age and Global Assessment of Functioning), there was a greater than 
expected percentage of African Americans not randomized to the innovative ACT treatment (p < 0.01).   
This observation serves as the point of departure for various modeling strategies. Both Hoch et al. (2002) 
as well as Hoch and Blume (2008) addressed the imbalance between race and treatment allocation using 
net benefit regressions of the form 

(6.3) nbi () = β0 + βtx txi + Black Blacki + Black_tx Blacki  txi + εi.

The indicator for race (Blacki) was 1 for African Americans and 0 otherwise, and the indicator for 
randomization group (txi) was 1 for the ACT group and 0 otherwise.

In contrast to the net benefit regression modeling strategy, Willan et al. (2004) made use of the 
simultaneous equation nature of the net benefit regression framework to focus on the cost and 
effectiveness regression equations (6.1) and (6.2).  This is justified by referring to Altman (1985) in 
explaining that the confounding effect of a baseline covariate has more to do with the magnitude of the 
between group difference and the magnitude of its effect on the outcome variable, rather than with the 
statistical significance of the between-group difference; consequently, a regression model was used to 
examine the effects of covariates suspected of affecting the outcome.  As a result, they employed a 
modeling strategy of the form

(6.1) ci = 0 + tx txi + Black Blacki + Black_tx Blacki  txi + vi

(6.2) ei = 0 + tx txi + ui

estimating the coefficients using a system of seemingly unrelated regression equations (SUR).  The 
differing covariate structure (i.e,. Xi

c   Xi
e = 0) is suggested by OLS results in Table A.  

The results for the effectiveness regression equation exhibit non-significant coefficient estimates for the 
Blacki and Blacki  txi variables.   However, in the cost regression equation, the estimates are statistically 
significant.   Willan et al. (2004) note that because the coefficient for race and its interaction were 
significant for cost, there is some evidence for concluding that ACT’s impact on cost depends on race; the 
implication being that cost-effectiveness likely varies by race.

Two additional challenges are the presence of heteroscedasticity and the skewed nature of the data.  
Breusch-Pagan / Cook-Weisberg tests for heteroscedasticity using the results in Table A show mixed 
evidence. For the effectiveness equation, the null hypothesis of constant variance cannot be rejected at 
conventional levels (2

(3) = 1.11, P = 0.29); however, for the cost equation homoscedasticity is rejected 
(2

(3) = 14.35, P <  0.001).  The skewness of the data is illustrated in Figure 2, where various transformations 
to achieve normality are compared. The cost data seem non-normal, as is common.
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4.3 Estimation strategies
In this section we provide the rationale behind the estimation strategies used to analyze the data.  The 
first two strategies we consider involve equation by equation estimation by OLS of the cost, effectiveness 
and net benefit regressions with all of the same covariates (i.e., Xi

c  = Xi
e) and allowing for different 

covariates (i.e., Xi
c  Xi

e).  We call these strategies OLS – I and OLS – II.

The OLS strategies are included to provide a yardstick to compare other estimation and uncertainty 
procedures.  Given that there is some evidence of heteroscedasticity, we use the “robust” option to 
produce White-corrected standard errors in the presence of heteroscedasticity (MacKinnon and White, 
1985; Davidson and MacKinnon, 2004). We also consider simultaneous equation estimation of the cost, 
effectiveness and net benefit regressions (where possible), both with all the same covariates (i.e., Xi

c  = 
Xi

e) and without (i.e., Xi
c  Xi

e).  We denote these strategies SUR – I and SUR – II when we use SUR to 
produce estimates, and we label these strategies GMM – I and GMM – II when we use GMM to produce 
estimates. The SUR methods allow for the potential correlation of the regression equation residual terms. 
The GMM estimation allows for strategies that incorporate the restrictions in a potentially more optimal 
manner.   

Regression equations for effectiveness, cost and net benefit cannot be estimated jointly all together using 
a simple simultaneous method as their covariance matrix of errors is singular.  In other words, with 
estimates for the parameters for two of the regression equations, one can produce the remaining 
estimates of the third. As such we report three types of estimates of B, the incremental net benefit.  The 
first comes from calculating the estimate as a function of the E and C estimates from the separate 
effectiveness and cost regressions (i.e., ). The second and third estimates come from 𝐵 = 𝜆 ∆𝐸 ‒ ∆𝐶
estimating the net benefit regression simultaneously with either the effectiveness regression equation 
or the cost regression equation.  All analyses were done in R; the OLS and SUR results were verified in 
Stata. Having described the different methods used to produce estimates and characterize their 
uncertainty, we now present results. 
 

5.0 Results
This section describes the results from the estimation strategies described in the previous section.

5.1 Equation by equation estimation 
The regression results are presented in Tables 1 and 2.  Table 1 illustrates the OLS results using robust 
standard errors.13  With equation by equation estimation of the cost, effectiveness and net benefit 
regressions with all of the same covariates (i.e., Xi

c  = Xi
e), it is clear the results seem to differ by race.  For 

the effectiveness equation, the coefficients on the Blacki and Blacki  txi variables are not statistically 
significant.  The ACT treatment indicator indicates an increase in stable housing by 98 days.  By introducing 
different covariates for the cost and effectiveness regression equations (i.e., removing the Blacki and Blacki 
 txi variables from the effectiveness regression equation), the E estimate becomes approximately 53 
days of stable housing for the same estimated cost savings.  The 98 days estimate is for White individuals 
only and the 53 days estimate is for all individuals. While the coefficient on the treatment indicator 
variable is statistically significant in both the OLS-I (i.e., Xi

c  = Xi
e) and the OLS-II (i.e., Xi

c   Xi
e) specifications, 

13 The robust standard error is of type HC1, which is the default in Stata.
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the estimate of C is only significant at P < 0.10. While the E estimate in the more parsimonious 
specification (OLS-II) is smaller (52.66 days vs. 98.10 days), its statistical significance is greater (P < 0.01 
vs. P < 0.05).  From the net benefit regression results of the fuller specification (OLS-I), there is evidence 
that the estimates of cost-effectiveness do not achieve statistical significance at conventional levels.

5.2 Simultaneous equations estimation 
Table 2 shows the results from simultaneous equations estimation both with and without imposing the 
restrictions (i.e., Xi

c   Xi
e).  SUR-I shows the results with Xi

c  = Xi
e .  As expected, SUR results with a full 

specification match those of OLS with a full specification (i.e., SUR-I estimates match OLS-I estimates).  
However, the statistical significance of the SUR estimates is much greater.  This is because of the 
homoscedasticity assumption, if the errors are heteroskedastic (as our initial test results suggest), then 
the reported standard errors (assuming constant variance) will be wrong.  The SUR-II specification has Xi

c  

 Xi
e.  The effectiveness results for SUR-II match those of the OLS-II specification; however, the cost results 

for SUR-II do not match those for the OLS-I, OLS-II or SUR-I specifications. While the net benefit regression 
results are the same no matter how they are derived in the SUR-I setting, they appear to differ in the 
SUR-II setting.  

When the SUR-II coefficients from the cost and effectiveness regression equations (6.1) and (6.2) are 
added to compute the net benefit regression estimates for the column labeled NB(=$10)a, the coefficient 
on the ACT treatment indicator is $51,361.  This matches the coefficient on the ACT treatment indicator 
in a net benefit regression equation when it is jointly estimated with the effectiveness regression equation 
in the column labeled NB(=$10)e.  However, this coefficient is $63,729 when the cost and the net benefit 
regression equations are jointly estimated as shown in the column labeled NB(=$10)c.  The results are 
identical to SUR-I. When the cost and the net benefit equations are estimated by SUR, the model is no 
longer over-identified. The results are therefore like OLS.

To summarize, the SUR-II results show that when the effectiveness and net benefit regression equations 
are estimated together, they produce INB estimates consistent with those from jointly estimated 
effectiveness and cost regression equations.  However, when the cost and net benefit regression 
equations are estimated together, the SUR-II results match the SUR-I results.  In other words, the 
restrictions (i.e., Xi

c   Xi
e) are not imposed.  In our specific case the covariates in the effectiveness 

regression equation are a proper subset of those in the cost regression equation.  However, if the 
effectiveness equation included a covariate (e.g., agei) that was not in the cost equation, e.g., 

(6.1) ci = 0 + tx txi + Black Blacki + Black_tx Blacki  txi + vi

(6.2) ei = 0 + tx txi + age agei + ui

(6.3) nbi () = 0 + tx txi + age agei + Black Blacki + Black_tx Blacki  txi + εi.

then jointly estimating the net benefit regression equation (6.3) with either equation (6.1) or (6.2) 
using SUR would not be an option.  To estimate the  coefficients in (6.3), what is needed is a way to 
impose coefficient restrictions like age = age, Black_tx = Black_tx and tx =  tx + tx in a situation where 
residual terms may be non-normally distributed and exhibiting heteroscedasticity of an unknown form.

The GMM methods address these challenges.  As noted above, the GMM – I model produces the same 
results as a the SUR – I model.  There are differences in the GMM – II scenario when using efficient GMM 
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without assuming homoscedasticity.  Both the estimates and the uncertainty measures differ slightly.  This 
is illustrated in Figure 4 which shows SUR – II and GMM – II results.  The difference in findings is most 
pronounced when it comes to the ICER’s estimate and uncertainty.  This is evident by the different x-
intercepts for the estimate and 95% CI lines.  In both cases, the ICER estimate is negative and this presents 
special challenges, especially for characterizing uncertainty.

5.3 Characterizing uncertainty
Figure 3 shows graphs of the INB estimate by willingness to pay value () from net benefit regressions 
stratified by race.  The solid line is the INB estimate (i.e., ).  It has a positive slope and a negative x-𝛽𝑡𝑥

intercept.  This means that the estimate for E > 0, the estimate for C < 0 and the estimate for the ICER 
< 0.  In these situations, it is considered good practice not to report an ICER (Stinnett and Mullahy, 1998).  
It is ok to compute estimates of C and E, but the ratio loses key mathematical properties (e.g., 
transitivity) when it is negative.  If one wants to report an estimate of the cost-effectiveness, the INB is a 
ready alternative.  For ICER analyses, in these situations, the main focus switches to characterizing the 
ICER’s statistical uncertainty.  As noted in section 2.1, Fieller’s theorem sometimes provides a way to 
express confidence intervals.  We use the relationship between Fieller’s theorem and the INB illustrated 
in Figure 1 to show that for African American participants, it is impossible to compute a 95% CI using 
Fieller’s method.  The graph to the left in Figure 3 shows the upper and lower confidence bounds for the 
INB estimate (as dashed lines).  It is clear that neither of the dashed lines intersects the x-axis.  
Consequently, there is no upper and no lower confidence bound produced when using Fieller’s theorem.  
For Caucasian subjects, one of the confidence bounds is negative, again raising concerns about negative 
ICERs.  Once more, the INB appears useful.  When studying a new intervention’s cost-effectiveness, the 
INB estimate can have meaning whether it is positive (or negative), indicating the degree to which the 
extra benefits outweigh (or are outweighed) by the extra costs.  In addition, the uncertainty measures for 
the INB (e.g., the 95% CI) can be used to characterize uncertainty for the ICER as well.

6.0 Discussion
The key question is whether it is better to estimate the INB piecemeal using   and  from separate ∆𝐸 ∆𝐶
effectiveness and cost regression equations (possibly estimated jointly) to compute , or 𝐵 = 𝜆 ∆𝐸 ‒ ∆𝐶
whether it is better to include a net benefit regression in a system of simultaneous equations with a focus 
on estimating tx.  The goal is to produce an estimate and characterize uncertainty.  Methods that optimize 
and facilitate both tasks are of great value to applied practitioners. This chapter demonstrates the cases 
when joint estimation represents a potential improvement over independent estimation and when it does 
not. There are gains to estimating as a system of equations only when the independent variables for the 
cost equation differ from those of the effectiveness equation (i.e., Xi

c   Xi
e).  In these situations, SUR is 

limited compared to GMM in terms of how to estimate a system of equations. Another key is that 
incremental net benefit can be estimated directly by jointly estimating net benefit and either cost or 
effectiveness equations when Xi

c  < Xi or Xi
e  < Xi, respectively. The identical results for SUR – II reported in 

Table 2 in the columns NB(=$10)a and NB(=$10)e can be explained by the fact that the moment 
conditions implied by the Effect-Cost system are identical to the conditions implied by the Effect-NB 
system.
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Our analysis adds to a sparse literature on cross-sectional applications of GMM (Wooldridge, 2001), with 
an example of how GMM methods can be useful in statistical cost-effectiveness analysis.  With our case 
study, we have focused on the evaluation of a healthcare intervention.  The economic evaluation of other 
types of interventions or programs (e.g., those for education or the environment) can be produced using 
the methods we have described.  The major advantages about using a GMM strategy in the NBRF is that 
it produces options for studying data sets with less savory characteristics (e.g., randomization failures, 
heteroskedastic errors, coefficient restrictions, etc.).  This flexibility suggests many promising directions 
for future research.  For example, what is the connection between our findings and those related to 
strategies for observational (non-randomized) data, covariate specification and joint estimation with non-
linear links (e.g., see Mantopoulos et al., 2016)? In addition, future research could explore extensions of 
these methods into longitudinal or hierarchical data analysis settings. GMM may play an important role 
in the analysis of cost-effectiveness data in the future.  
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Figure 1: Illustration of the relationship between the estimates and uncertainty for the Incremental 
Cost Effectiveness Ratio (ICER) and the Incremental Net Benefit (INB) as a function of Willingness to 
Pay ()
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Fieller CI

Upper 95% 
Fieller CIICER Estimate
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when  = $100
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Figure 2: Histogram of the Cost and Effectiveness data after various transformations (including no transformation indicated by Identity)
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Table A: OLS regression results for the effectiveness and cost equations

(1) (2)
VARIABLES Effectiveness

(stable housing days)
Cost

(US $)

Tx 98.10*** -62,748***
(26.65 - 169.55) (-109,269 - -16,227)

Black 31.92 -53,809**
(-33.57 - 97.40) (-96,446 - -11,171)

Black  tx -62.48 57,676**
(-144.8 - 19.81) (4,092 - 111,260)

Constant 132.65*** 112,239***
(72.87 - 192.43) (73,317 - 151,162)

N 145 145
Adjusted R2 0.056 0.035
F test p-value 0.0110 0.0469

95% CI in parentheses
*** p<0.01, ** p<0.05, * p<0.1
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Table 1

Dependent variable
Effectiveness
(stable 
housing 
days)

Cost 
(US $)

NB(=$10)reg

OLS – Ir TX 98.10** -62,748* 63,729*
OLS – Ir Black 31.92 -53,809* 54,128*
OLS – Ir Black*TX -62.48 57,676* -58,301*
OLS – Ir Constant 132.65*** 112,239*** -110,913***

OLS – IIr TX 52.66*** -62,748* —
OLS – IIr Black — -53,809* —
OLS – IIr Black*TX — 57,676* —
OLS – IIr Constant 159.25*** 112,239*** —

Equation by 
Equation
Estimation

*** p<0.01, ** p<0.05, * p<0.1

Note: r = “robust” option used to produce White-corrected standard errors in the presence of heteroscedasticity.  The robust standard error used 
is of type HC1, which is the default in Stata.                                 

reg = coefficients from a net benefit regression, nbi () = β0 + βtx txi + x Xi + εi.  Results using robust standard errors of type HC0, HC1, HC2 and HC3 
are available from the authors.

. 
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Table 2

Dependent variable
Effect Cost NB(=$10)a NB(=$10)e NB(=$10)c

SUR – Ii TX 98.10*** -62,748*** 63,729*** 63,729*** 63,729***
SUR – Ii Black 31.92 -53,809** 54,128** 54,128** 54,128**
SUR – Ii Black*TX -62.48 57,676** -58,301* -58,301** -58,301**
SUR – Ii Constant 132.65*** 112,239*** -110,913*** -110,913*** -110,913***

SUR – IIi TX 52.66*** -50,835** 51,361*** 51,361** 63,729***
SUR – IIi Black — -45,441** 45,441** 45,441** 54,128**
SUR – IIi Black*TX — 41,294* -41,294* -41,294* -58,301**
SUR – IIi Constant 159.25*** 105,266*** -103,674*** -103,674*** -110,913***

GMM – I TX 
GMM – I Black
GMM – I Black*TX
GMM – I Constant

Same results as SUR – I

GMM – II TX 56.74*** -46,1445* 46,712*
GMM – II Black — -39,072 39,072
GMM – II Black*TX — 36,180 -36,180
GMM – II Constant 160.77*** 98,372*** -96,764***

Simultaneous 
system of 
equations
estimation

*** p<0.01, ** p<0.05, * p<0.1

Note: i = “isure” option specifying iteration over the estimated disturbance covariance matrix and parameter estimates until the parameter 
estimates converge.  Under seemingly unrelated regression (SUR), this iteration converges to the maximum likelihood results.  However, these 
SUR estimates have been calculated under the assumption of homoscedasticity.  a = addition of the effectiveness regression and cost regression 
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coefficients (e.g.,    -  ). e = coefficients for both the effectiveness and the net benefit regression equations simultaneously estimated together. ξ α
c = coefficients for both the cost and the net benefit regression equations simultaneously estimated together.

Figure 3: Incremental net benefit by willingness to pay graphs by race

                                                           African American                                                                                                           Caucasian
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Figure 4


