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Abstract

This paper extends the generalized empirical likelihood method to the case in which
the moment conditions are defined on a continuum (CGEL). We show, for the iid case,
that CGEL is asymptotically equivalent at the first order to the generalized method of
moments for a continuum (CGMM) developed by Carrasco and Florens (2000). Because
the system of equations that we need to solve becomes singular when the number of mo-
ment conditions converges to infinity, we treat CGEL as a nonlinear ill-posed problem
and obtain the solution using the regularized Gauss-Newton method. This numerical al-
gorithm is a fast and relatively easy way to compute the regularized Tikhonov solution
to nonlinear ill-posed problems in function spaces. In order to compare the properties of
CGEL and CGMM, we then perform a numerical study in which we estimate the parame-
ters of a stable distribution using moment conditions based on the characteristic function.
The results show that CGEL outperforms CGMM in most cases according to the root
mean squared error criterion.

Classification JEL: C13, C30

1 Introduction

When estimating models based on moment conditions, it is often the case that the number
of conditions is so large that selecting the right ones becomes an issue. For example, in
the case of linear models with endogenous regressors as considered by Carrasco (2011), the
set of possible instruments can be countably infinite or defined on a continuum. Moment
conditions can also be naturally based on a continuum when, for example, they are defined
by characteristic functions or spectral densities. In these cases, methods such as instrumental
variables (IV) cannot be based on the whole set of moment conditions because the system of
equations implied by the first order conditions becomes singular as the number of conditions
increases beyond the sample size. Because it may reduce the quality of the estimators when
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weak instruments are chosen and inversely for strong instruments, we have to be careful in
the selection. Donald and Newey (2001) present a method for selecting the optimal number
of instruments but it requires a certain ordering so that the stronger are selected and the
weaker are dropped. On the other hand, Carrasco (2011) apply the generalized method of
moment for a continuum (CGMM) of Carrasco and Florens (2000) in which the whole set of
instruments can be used without imposing any ordering. The method is based on a Tikhonov
regularization technique which is comparable to a principal component selection procedure.
The most influential moment conditions are therefore automatically selected. In this paper, we
extend the generalized empirical likelihood method (GEL) of Smith (1997) so that it can also
deal with a continuum of moment conditions (CGEL). The second order asymptotic results
obtained by Newey and Smith (2004) and Anatolyev (2005) suggest that CGEL may be a
good alternative to CGMM. The CGEL estimator is defined as the solution to a constrained
optimization problem in which the number of constraints is infinite. Such a problem cannot
easily be solved using a finite number of observations. The main contribution of the paper
is to show both theoretically and practically how we can obtain a stable solution to such
problems. The method can even be applied to cases in which the number of conditions is
finite but large enough so that the problem becomes ill-conditioned. It offers a way to deal
with the selection of moment conditions using a Tikhonov type approach similar to CGMM.
Furthermore, we present the algorithms in matrix notation to simplify its implementation.

When defining the objective function of the efficient CGMM, we need the regularized
solution to a linear ill-posed problem, because the optimal weighting operator cannot be
continuously inverted. On the other hand, the objective function of CGEL is well defined.
However, the system of equations from which we compute the Lagrange multiplier associated
with the moment conditions becomes singular when the number of conditions goes to infinity.
As a result, we present CGEL as a nonlinear ill-posed problem in the sense that a unique and
stable solution cannot be obtained directly from the first order conditions. The literature in
applied mathematics offers several ways to deal with nonlinear ill-posed problems. As a first
procedure, we apply the regularized Gauss-Newton algorithm which can be compared to using
ridge regression techniques to estimate a poorly conditioned nonlinear regression. We also
present an alternative regularized method which is based on the singular value decomposition
of the first order Taylor approximation of the solution. This method has the advantage of
being less computationally demanding and asymptotically equivalent to the first procedure.
We present the algorithms for the exponential tilting (CET), the empirical likelihood (CEL)
and the Euclidean empirical likelihood (CEEL) for a continuum by using a matrix notation
as in Carrasco et al. (2007a) for CGMM. Moreover, in order to test the over-identifying
restrictions, we present a normalized version of the three tests proposed by Smith (2004)
so that they are all asymptotically distributed as a standardized normal distribution. We
conclude the theoretical part with a brief discussion on how to implement the exponentially
tilted empirical likelihood of Schennach (2007) for a continuum (CETEL).

We perform a numerical study in which we compare the finite sample properties of the
three CGEL methods using the two proposed algorithms with CGMM. We use the example of
estimating the parameters of a stable distribution using the marginal characteristic function as
in Carrasco and Florens (2002) and Garcia et al. (2006). We also compare the empirical sizes
of the three tests of over-identifying restrictions. All the results are computed for different
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values of the regularization parameter because no data-driven method is available to select
its optimal value. What we get suggests that CGEL may outperform CGMM according to
the root mean squared error criterion. We also compare CGEL with the maximum likelihood
estimator and find that for a good selection of the regularization parameter, we can get
comparable properties.

The paper is organized as follows. Section 2 gives an overview of GEL while section
3 presents the CGEL method and section 5 the three tests of over-identifying restrictions.
Section 4 describes the two numerical algorithms, section 6 presents the numerical study and
section 7 concludes.

2 GEL

This section presents an overview of the GEL method when there are a finite number of
moment conditions. It serves as an introduction to the next section, which generalizes the
method to the case of a continuum of conditions. Therefore we express the function defining
the moment conditions in a way that facilitates the transition from GEL to CGEL.

We suppose that the vector θ0 ∈ Θ ⊆ Rp is uniquely identified by a vector of q moment
conditions. Instead of writing these conditions in the usual way as E[gτ (X; θ0)] = 0 for
τ = 1, ..., q, we incorporate the index in the function as follows:

EP0g(X, τi; θ0) = 0 ∀i = 1, · · · , q, (1)

where the index i implies that τ belongs to a countable set (finite in this section), and P0 is
the true probability distribution associated with the random variable X. For example, if we
are estimating a linear model using instruments, τi = i and defines the condition associated
with the ith instrument. But it could also be an element of the function if, for example,
the vector of parameters is estimated using characteristic functions. In this case, τi would
be equal to some selected points of the function which are the most susceptible of producing
good estimates.

We suppose that we can estimate the moment function from a vector of n i.i.d. realizations
of the random variable X, {x1, x2, · · · , xn}. In general, we can write the q×1 vector of sample
moment conditions as follows:

g̃(θ) =

n∑
t=1

ptg(xt; θ),

where pt is the probability associated with the realization xt.
The GMM estimator is defined as the vector of parameters that minimizes the norm

of the sample moment ḡ(θ), which is based on the empirical density of the observations
fn(xt) = (1/n) ∀t. Going through this optimization problem if necessary because when q > p,
there is no solution to the sample moment conditions ḡ(θ) = 0, in which pt is restricted to
1/n. On the other hand, the GEL method consists in finding the implied probabilities pt,
which are as close as possible to 1/n according to a certain family of discrepancies hn(pt),
that satisfy the conditions exactly. This interpretation represents the primal problem which
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defines the GEL estimators:

θ̂gel = arg min
θ,pt

n∑
t=1

hn(pt) (2)

subject to

n∑
t=1

ptg(xt, τi; θ) = 0 ∀i = 1, · · · q and (3)

n∑
t=1

pt = 1, (4)

as long as hn(pt) belongs to the following Cressie-Read family of discrepancies:

hn(pt) =
[γ(γ + 1)]−1[(npt)

γ+1 − 1]

n
.

Smith (1997) shows that the empirical likelihood method (EL) of Owen (2001) (γ = −1) and
the exponential tilting of Kitamura and Stutzer (1997) (γ = 0) belong to the GEL family
of estimators while Newey and Smith (2004) show that it is also the case for the continuous
updated estimator (CUE) of Hansen et al. (1996) (γ = 1). They all have in common that we
can express their dual problem as:

θ̂gel = arg min
θ∈Θ

[
max
λ∈Λn

1

n

n∑
t=1

ρ
(
λ′g(xt; θ)

)]
, (5)

where ρ(v) is a strictly concave function that depends on hn(pt) and is normalized so that
ρ′(0) = ρ′′(0) = −1. We can show that ρ(v) = ln (1− v) corresponds to EL, ρ(v) = − exp (v)
to ET and to CUE if ρ(v) is quadratic. We assume that Θ is a compact set and λ, which
is the q × 1 vector representing the Lagrange multiplier associated with the constraint (3),
belongs to Λn = {λ : λ′g(xt; θ) ∈ D ∀ xt}, where D is the domain of ρ(v).

Newey and Smith (2004) and Anatolyev (2005) show that the EL estimator has a lower
second order asymptotic bias than ET and CUE and that its bias corrected version is higher
order efficient. This performance is, to some extent, due to the fact that EL’s estimators of the
Jacobian and second moment matrices, as opposed to the other GEL methods, are based on
the implied probabilities which carry more information than 1/n (see Antoine et al. (2007)).
However, because of the non negativity constraint that we need to impose on these implied
probabilities, ET offers a natural way to meet this requirement, which makes it numerically
more stable than EL especially in presence of model misspecification. In response to this,
Schennach (2007) combines ET and EL in a method called the exponentially tilted empirical
likelihood (ETEL). This method shares the same second order properties of EL and the
stability of ET in presence of model misspecification. Although it does not belong to the
GEL family, we offer below a brief discussion because its computational stability is appealing
especially in the case of a continuum of conditions.
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We can easily verify the equivalence of the primal and dual problems by showing that they
share the same following first order conditions:

n∑
t=1

ptg(xt, τi; θ) = 0 ∀i = 1, · · · , q,

n∑
t=1

ptλ
′
(
∂g(xt; θ)

∂θ

)
= 0,

with

pt =
1

n
ρ′
(
λ′g(xt; θ)

)
.

The following asymptotic properties of GEL are proved by Newey and Smith (2004). The
assumptions that are required for consistency of λ̂gel and θ̂gel are the same as for GMM plus
some additional ones associated with the Lagrange multipliers. There is an identification
assumption for θ0, some boundness conditions on higher moments of ‖g(xt; θ)‖ and a non-
singularity assumption of the covariance matrix Ω. The latter guarantees that the numerical
solution is unique and computable at least with probability approaching one. They show

that under these assumptions, θ̂gel
P→ θ0 and λ̂gel

P→ 0. Furthermore, under some additional
assumptions which allow to apply a central limit theorem, the estimators are asymptotically
distributed as √

n(θ̂gel − θ0)
d→ N(0, (G′Ω−1G)−1)

and √
nλ̂gel

d→ N
{

0,Ω−1 − Ω−1G
[
G′Ω−1G

]−1
G′Ω−1

}
,

where G = E(∂g(X; θ0)/∂θ) and Ω is the asymptotic covariance matrix of n−1/2
∑

t g(xt; θ0).
Therefore, GEL shares the same asymptotic properties as GMM.

3 CGEL

In order to illustrate how we can extend the previous results to the case in which the moment
conditions are defined on a continuum, and how it affects the stability and existence of the
solution, we start by assuming that τi, for i = 1, ..., q, lies in the fixed interval [a, b] and is
defined as τi = a+ i(b−a)/q. The space in which τi lies is therefore Tq ⊆ Q∩ [a, b]. As q goes
to infinity, the space converges to T∞ ≡ T = [a, b]. This representation makes sense only if
τi is an argument of the function defining the moment conditions. For example, if we want
to estimate the linear model yt = Wtθ + εt, where Wt = e−x

2
t + ut and Cov(εt, ut) 6= 0, as in

Carrasco (2011) with p = 1, we can base our estimation on the following moment conditions
(In the following, these three expressions will be used interchangeably: g(xt; θ), gt(θ) or gt,
when we refer to the function from T to C. The form g(xt, τ ; θ) or gt(τ ; θ) will be used only
when we need to specify the moment condition.):

E
[
gt(τj ; θ)

]
= E

[
(yt −Wtθ)e

(iτjxt)
]

= 0, for j = 1, ..., q and τj ∈ Tq,
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where the points τj are chosen arbitrarily unless some selection methods are used (see Carrasco
(2011)). In the simulation below, we estimate the parameters of a stable distribution using
the marginal characteristic function for which the same kind of discretization can be applied.

The objective is to define CGEL estimators as the solution to the GEL optimization
problem when q goes to infinity. Therefore, we assume that the function gt(τi; θ) belongs
to an Hilbert space Hq with inner products defined as < g, f >q=

∑q
i=1 g(τi)f(τi)π(τi)∆τi,

where π(τ) is an integrating density as the one introduced by Carrasco et al. (2007a). For
GEL, the integrating density is the one from the uniform distribution and ∆τi = ∆τi−1, so
that < g, f >q is the Euclidean inner product. If all f() and g() in Hq are square-integrable,
then Hq converges to the Hilbert space H of square-integrable functions on [a, b] with inner

product < f, g >=
∫ b
a f(τ)g(τ)π(τ)dτ . This structure1 implies that the estimators of GEL is

defined by the primal problem:

{θ̂q, λ̂q, µ̂q, p̂qt} = arg min
θ,µ,pt,λ

L =

n∑
t=1

hn(pt) +

〈
λ,

n∑
t=1

ptgt(θ)

〉
q

+ µ

(
n∑
t=1

pt − 1

)
, (6)

where the subscript q means that the estimates are based on q moment conditions. This
problem converges to the following primal problem of CGEL when q goes to infinity:

{θ̂, λ̂, µ̂, p̂t} = arg min
θ,µ,pt,λ

L =

n∑
t=1

hn(pt) +

n∑
t=1

pt

∫ b

a
λ(τ)gt(τ ; θ)π(τ)dτ +µ

(
n∑
t=1

pt − 1

)
, (7)

In the same way, the dual of GEL and CGEL are respectively:

θ̂q = arg min
θ∈Θ

[
max
λ∈Λq,n

Pq(λ, θ) =
1

n

n∑
t=1

ρ (< λ, gt(θ) >q)

]
(8)

and

θ̂ = arg min
θ∈Θ

[
max
λ∈Λn

P (λ, θ) =
1

n

n∑
t=1

ρ

(∫ b

a
λ(τ)gt(τ ; θ)π(τ)dτ

)]
, (9)

where Λq,n = {λ :< λ, g(xt, θ) >q∈ D ∀ xt} and Λn = {λ :
∫ b
a λ(τ)g(xt, τ, θ)π(τ)dτ ∈ D ∀ xt}.

Notice that the continuous updated GMM for a continuum (CCUE) is not a special case of
CGEL. When ρ(v) is quadratic, we will refer to the CEEL of Antoine et al. (2007). We only
have asymptotic equivalence between CCUE and CEEL as opposed to the case in which the
number of conditions is finite (see Appendix D.1).

It follows that we can obtain the solution of GEL by solving the following first order
conditions:

n∑
t=1

1

n
ρ′ (< λ, gt(θ) >q) gt(τi; θ) = 0 ∀i = 1, · · · , q, (10)

1Notice that we focus on a continuum of conditions. However, the case of a countably infinite set of
conditions is implicit in this setup if we properly define π(τ). A typical element of the space would be f(τi)
for i ∈ N and we would get < f, g >=

∑
i f(τi)g(τi). Some times, in the case of a finite number of conditions,

GEL fails to produce results due to poorly conditioned first order conditions. In such cases, we could use the
CGEL setup to get a more stable solution. We would simply need to set π(τi) = 0 for i > q.
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n∑
t=1

1

n
ρ′ (< λ, gt(θ) >q)

〈
λ,

(
∂gt(θ)

∂θ

)〉
q

= 0, (11)

For a given λ, solving the system of p equations (11) is not an issue, even if q goes to infinity,
as long as the system is not singular. The problem with GEL arises when we try solving
conditions (10) for a given θ. As q increases for a given n, the system becomes more and
more poorly conditioned. Indeed, based on the Taylor expansion, we can obtain the solution
by using this iterative procedure:

λl = λl−1 −

〈[
1

n

n∑
t=1

ρ′′
(
〈λl−1, gt〉q

)
gtg
′
t

]−1

,

[
1

n

n∑
t=1

ρ′
(
〈λl−1, gt〉q

)
gt

]〉
q

,

starting with λ0 = 0. The second term of the right hand side of this procedure is the
solution to a system of q linear equations. As q increases, the system becomes singular.
As a result, λ(θ) becomes not computable. It is like trying to estimate a model using too
many instruments. Therefore, the limiting case of equation (10), which implies the following
continuum of conditions

n∑
t=1

1

n
ρ′
(∫ b

a
λ(τ)gt(τ ; θ)π(τ)dτ

)
gt(τ, θ) = 0 ∀τ ∈ [a, b], (12)

is ill-posed in the sense that we cannot find a unique solution without imposing a penalty on
its instability (Appendix D.2 shows the ill-posedness of equation (12) for the CEEL case even
if the right-hand side is not random as required for linear ill-posed problems). The problem
arises whether we are dealing with a continuum of conditions, an infinite number of countable
conditions or simply when there are a finite but large number of conditions. The last two
cases constitute special cases of CGEL simply by selecting the proper integrating density as
suggested by Carrasco (2011) for CGMM.

The ill-posedness aspect of GEL in such cases was implicit in the empirical likelihood
version of Kitamura et al. (2004) and Donald et al. (2003) since they both require a smoothing
parameter. In the first paper, they use a bandwidth parameter while in the second they
restrict the number of instruments which also constitute a way of smoothing the problem.
Carrasco (2011) deals with the problem by using CGMM, which imposes a Tikhonov’s type
of penalization in order to make the system solvable (see appendix A.1 for an overview of the
CGMM method). It can be seen as a method which automatically selects the most influential
moment conditions among the whole set, much like a principal component procedure. A
similar approach can be used to solve the ill-posedness of CGEL. Notice, however, that CGMM
requires a penalization in order to define its objective function, while CGEL requires it in
order to solve it. It is like a nonlinear ridge regression in the sense that the problem, which
consists in minimizing

∑
t u

2
t with ut = yt − x(β), is well defined, but we cannot obtain a

stable solution because the columns of X(β) = dx(β)/dβ are nearly collinear. In this case,
as suggested by Dagenais (1983), we can apply the ridge regression technique to the iterative
procedure and substitutes the poorly conditioned matrix X(β)′X(β) by [X(β)′X(β)+αnI] for
some αn > 0. Even in Theorem 3.1 of Newey and Smith (2004), the uniqueness and existence
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of the solution are only satisfied with probability approaching one. It may not be the case
in small samples, in which case a penalization as in ridge regressions would be required to
obtain a stable solution.

In the rest of the paper, we use the notation from the literature on nonlinear and linear
operators as the articles from which the numerical procedures used below come from. This
also offers a nice and compact way to present the results, especially when working in function
spaces. For example, we can rewrite the problem of ill-posedness using the notation of Seidman
and Vogel (1989). Their definition of ill-posedness is much like the one we are facing here.
Indeed, we can present the first order condition associated with the Lagrange multiplier as
the problem of solving the nonlinear operator equation L(λ) = 0, where

L(λ) = E

[
ρ′
(∫ b

a
λ(τ)gt(τ ; θ0)π(τ)dτ

)
gt(θ0)

]
,

using the disturbed system L̂(λ) = 0 defined by equation (12) in which θ0 is replaced by
an estimate and E() by the sample mean. The solution is λ = 0 and is unique given some
identification assumptions. It is however ill-posed in the sense that we cannot compute a
stable and unique solution to the disturbed system without smoothing it. It is ill-posed even
if the right hand side is not random as required by linear ill-posed problems. In the nonlinear
case, the ill-posedness appears in the iterative procedure in which a linear ill-posed problem is
solved at each iteration. Therefore, in what follows, we regard CGEL as a nonlinear ill-posed
problem in function space, which implies that we need a regularized method for computing
the solution.

When it is clear, we will use the linear operator notation instead of explicit integrations or
inner products. For example, if we have two square-integrable functions f(x), g(x): T → C,
we will write fg =

∫
T f(x)g(x)π(x)dx in which case, f is an operator from L2(π)→ C. If fur-

thermore we have a function A(x, y): T 2 → C, we will write (Af)(x) =
∫
T A(x, y)f(y)π(y)dy,

in which case A is an operator from L2(π) to L2(π) with kernel A(x, y). Using this notation,
we can rewrite equation (9) as P (λ, θ) ≡ (1/n)

∑n
t=1 ρ(λgt), where λ is presented as a linear

operator from L2(π) to C. Solving the saddle point problem using this notation gives the
following first order conditions 2:

Fn1(λ) ≡ 1

n

n∑
t=1

ρ′(λgt)gt = 0 (13)

and

Fn2(θ) ≡ 1

n

n∑
t=1

ρ′(λgt) [λGt] = 0, (14)

where

Gt ≡
∂gt(θ)

∂θ
.

where Fn1 is written as a function only of λ to emphasize the fact that it is the system that
produces the solution λ(θ) for a given θ and inversely for Fn2. Fn2(θ) is the derivative of

2For a good review of optimization in function spaces, see Luenberger (1997)
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P (λ, θ) with respect of θ. It is therefore a vector with the same dimension as θ, which is p×1.
However, Fn1(λ) is the Fréchet derivative of P (λ, θ) with respect to the function λ. It is an
operator from L2(π) → C. That is, if f ∈ L2(π), then Fn1(λ)f =

∫
T Fn1(λ, τ)f(τ)π(τ)dτ .

Since the Fréchet derivative is a generalization of the conventional derivatives for any vector
space, we will say that Fn2() is also a Fréchet derivative. It is an operator from Rp → C.
As a result, for a p × 1 vector y, Fn2(θ)y =

∑p
i=1 Fn2(θ)iyi. Finally, Gt is a p × 1 vector of

square-integrable functions. If h ∈ L2(π), Gth =
∫
T h(τ)Gt(τ)π(τ)dτ while if h ∈ Rp then

Gth =
∑p

i=1 hiGti (See appendix A.2 from an overview of Fréchet derivatives.).
If we consider a linear ill-posed problem such as the Fredholm integral equation of the

first kind Kg = y, we can obtain a stable and unique solution by using a Tikhonov approach
which consists in solving the following (See Carrasco et al. (2007b) for details on how to solve
linear ill-posed problems):

min
g
‖Kg − y‖2 + αn‖g‖2,

where the second term imposes a penalty on the instability of the solution. The regularization
parameter αn determines the degree of penalty. We need to choose it carefully because if it
is too small, the solution is more accurate but less stable and inversely if it is too large. The
system Kg = y is then replaced by the first order condition of the minimization problem
which is:

K(Kg − y) + αng = 0.

The system is now well-posed, given certain regularity conditions, and gives the solution
gα = (K2 + αnI)−1Ky, where I is the identity operator and (K2 + αnI)−1K is a generalized
inverse of K. The ill-posedness is caused by the fact that K is a compact bounded operator
and is not invertible.

When we deal with a nonlinear system such as F (g) = y, ill-posedness is characterized by
the non-invertibility of the Fréchet derivative operator. The Fréchet derivative of Fn1(λ) is
an operator with kernel defined as:

DFn1(λ, τ1, τ2) =
1

n

n∑
t=1

ρ′′(λgt)gt(τ1)gt(τ2).

Instead of Fn1(λ) = 0, we then need to solve the following minimization problem:

min
λ
‖Fn1(λ)‖2 + αn‖λ‖2.

In general, the penalty function can be any non-negative function satisfying certain conditions.
For example, the Sobolev norm satisfies the conditions required. However, the choice of the
penalty function affects only the speed of convergence of the numerical algorithms used. It
does not affect the speed of convergence of the estimator to its true value as n goes to infinity,
as long as we assume that the numerical solution as been reached. The choice made here is
to simplify the presentation.

The first order condition of the minimization problem is

DFn1(λ)Fn1(λ) + αnλ = 0, (15)
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which cannot be solved analytically, as for the linear case, because of the nonlinearity. We
present the numerical method that we use for solving this system in section 6. The feasible
CGEL is therefore defined as the vector θ̂ and the function λ̂ which solve equations (14) and
(15).

We need some assumptions for deriving the asymptotic properties of CGEL. The first set
is similar to Assumption A.2 of Carrasco et al. (2007a) but for i.i.d observations.

Assumption 1. a) The observations {x1, x2, · · · , xn} are i.i.d, b) L2(π) is the Hilbert space
of square integrable complex functions in which the inner product < f, g > is defined as∫
f(τ)g(τ)π(τ)dτ , where π(τ) is a density function which is absolutely continuous with respect

to the Lebesgue measure, c) g(xt, τ ; θ) ∈ L2(π), ∀xt and θ, and d) g(xt, τ, θ) is continuously
differentiable with respect to θ for all τ and xt.

The second set is similar to Assumption 1 of Newey and Smith (2004). However, we will
need to be more specific about ν for consistency. In fact, it will depend on the speed at which
αn goes to zero. What we need is the existence of higher moments when the regularization
parameter goes to zero faster. The exact condition is given in Theorem 1.

Assumption 2. a) θ0 ∈ Θ is the unique solution to EP0g(X; θ) = 0, where Θ is a compact
subset of Rp, and b) EP0 [supθ ‖g(X; θ)‖ν ] <∞ for some ν > 2

The space in which τ belongs is defined by T instead of [a, b]. For example, if the moment
conditions are based on the characteristic function as in Carrasco et al. (2007a), T is either
R2 or R. It is [0, π]s, for some integer s, if the conditions are based on a spectral density as
in Berkowitz (2001).

Assumption 1 and 2 imply that:

√
n

n∑
t=1

g(xt, θ0) ≡ n1/2ḡ(θ0)
L→ N(0,K),

where K is a covariance operator with the following kernel3:

k(τ1, τ2) = EP0 [g(X, τ1; θ0)g(X, τ2; θ0)] .

The following assumptions replace the full rank properties of Ω that is imposed by Newey
and Smith (2004). It implies that the solution of Kf = g exists and is unique as long as
g ∈ R(K), where R(K) is the range of K. It also implies that K can be expressed as the limit
of a sequence of linear operator Kn, which is important when K needs to be estimated.

Assumption 3. a) K is a Hilbert-Schmidt operator, which implies that it is bounded and
compact. b) K has only strictly positive eigenvalues. This assumption implies that the null
space of K, N(K), is {0}. c) The skewness operator S with kernel

s(τ1, τ2, τ3) = E[gt(τ1; θ0)gt(τ2; θ0)gt(τ3; θ0)]

3For a good review of linear operators such as covariance operators applied to econometrics, see Carrasco
et al. (2007b)
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is bounded and compact.

The following conditions on Gt ≡ ∂gt/∂θ are also required for asymptotic normality and
the boundness of ‖EP0 [gt]‖3 guarantees that the remainder term of the Taylor expansion of
the first order condition vanishes as n goes to infinity.

Assumption 4. a) rank(Gt) = p ∀t, b) E[supθ‖Gt‖] < ∞, c) E(g(θ)) ∈ D(K−1) for all θ
on a neighborhood of θ0 and d) EP0‖gt(θ)‖3 <∞ for all θ.

The last set of assumptions defines the properties of ρ(v) that we need for the asymptotic
theory.

Assumption 5. a) ρ(v) is strictly concave and twice continuously differentiable. b) ρ′′(v) is
Lipschitz continuous at least in the neighborhood of 0, c) ρ′′′(v) is continuous in the neighbor-
hood of 0 and d) ρ(v) is normalized in such way that ρ′(0) = ρ′′(0) = ρ′′′(0) = −1

These requirements are satisfied by ρ(v) associated with CEL, CET and CEEL. Assump-
tion 4 b) could be replaced by ρ′′(v) being everywhere differentiable since it implies Lipschitz
continuity. But it is not necessary. This condition is important in order for the regularized
Gauss-Newton method presented in the next section to be locally convergent as explained by
Blaschke et al. (1997). The proofs of the following theorems can be found in the appendix.

Theorem 1. If Assumptions 1 to 4 are satisfied, αn = O(n−χ) with 0 < χ < 1/2, and

ν > 2/(1 − 2χ) in Assumption 2b), then θ̂n
p→ θ0 and λ̂n

p→ 0, with ‖λ̂n‖ = Op(1/(αn
√
n)),

where θ̂n and λ̂n are the solutions to the equations (14) and (15).

Theorem 2. If assumptions 1, to 5 are satisfied, then:

√
n(θ̂ − θ0)

L→ N(0, [GK−1G]−1)

and √
nλ̂

L→ N
(
0,
[
K−1 −K−1G(GK−1G)−1GK−1

])
as n goes to infinity, αn goes to zero and nα4

n goes to infinity.

In both theorems, αn needs to converge to 0 not too quickly because it is necessary for the
system to stay stable as n increases. As a result, CGEL shares the same asymptotic properties
as CGMM.
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We conclude this section by defining the exponentially tilted empirical likelihood method
of Schennach (2007) for a continuum (CETEL). It is the vector θ̂cetel and the function λ̂cetel
which solve the following conditions:

1

n

n∑
t=1

ρ′EL(λgt) [λGt] = 0 (16)

and
DFnET (λ)FnET (λ) + αnλ = 0, (17)

where ρEL(v) = log(1 − v) and FnET is Fn1 with ρ(v) = −ev. Since the proofs can easily
be derived from the ones from theorems 1 and 2, the asymptotic results are expressed in the
following corollary.

Corollary 1. If the assumptions of the theorems 1 and 2 are satisfied, the CETEL estimator
shares the same asymptotic properties as CGEL.

The idea is that the first order asymptotic properties of CGEL depend only on the behavior
of ρ′(v) and ρ′′(v) around zero. Since they are all the same, it does not matter which ρ(v) we
uses for λ and which one for θ.

4 Estimation procedures

In this section, we present two different estimation procedures which compete in terms of
computation time and we express them in matrix form as done by Carrasco et al. (2007a) for
CGMM. The first is based on the first order Taylor approximation of the solution λ(θ), while
the second solves equation (15) using an iterative procedure. For the GEL case, Guggenberger
and Hahn (2005) offer an argument for using what they call the two step empirical likelihood
estimator, which is nothing more than the solution obtained from a Newton algorithm after
two iterations. They show that increasing the number of iterations does not affect the third
order asymptotic bias. Our first procedure approximates the solution λ(θ) which is then used
by the numerical optimizer to compute θ̂. Because the second procedure is computationally
demanding, it may represent a good alternative. We analyze the properties of both procedures
in section 6 through a numerical experiment.

4.1 Taylor approximation and singular value decomposition

The first method follows Carrasco and Florens (2000) who present the singular value de-
composition as a way of solving linear ill-posed problems (see also Groetsch (1993)). The
ill-posedness arises in the first order Taylor approximation of the solution λ(θ) of equation
(15), which implies (see appendix A.2):

K̂λ̂ = −ḡ(θ) + op(1),
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where K̂ is the estimated covariance operator of gt with kernel

kn(τ1, τ2) =
1

n

n∑
t=1

g(xt, τ1; θ)g(xt, τ2; θ).

Notice that this approximation is the exact solution of CEEL because in this case, ρ(v) is
quadratic and then Fn1(λ) is linear.

The covariance operator K, is a self-adjoint operator with infinite dimensional range R(K).
If we want the solution to Kx = y, for x, y ∈ L2(π), we can use the singular system (νi, µi)
of K, where νi is an orthonormal eigenfunction and µi the associated singular value. Because
the dimension of R(K) is infinite, there are infinitely many singular values. Furthermore,
these eigenfunctions are complete in R(K2) = N(K)⊥, where N(K) is the null space of K.
It implies that for any f ∈ R(K):

f =

∞∑
i=1

< f, νi > νi.

We can easily see that any solution x̃ of Kx = y has the following form:

x̃ =
∞∑
i=1

1

µi
< y, νi > νi + ϕ,

where ϕ ∈ N(K). Since N(K) = {0}, if y ∈ R(K), the unique solution is:

x̃ =

∞∑
i=1

1

µi
< y, νi > νi.

We can obtain a stable solution from the following regularized system:

(K2 + αnI)xα = Ky,

which implies the following solution:

xα =
∞∑
i=1

(
µi

µ2
i + αn

)
< y, νi > νi.

Therefore, the solution requires an infinite number of eigenfunctions. However, when K is
unknown and is replaced by K̂, the solution is much simpler. As Carrasco and Florens (2000)
show, the dimension of R(K̂) is finite:

(K̂f)(τ2) =

∫
T
kn(τ1, τ2)f(τ1)π(τ1)dτ1

=

∫
T

1

n

n∑
t=1

g(xt, τ1; θ)g(xt, τ2; θ)f(τ1)π(τ1)dτ1

=
n∑
t=1

g(xt, τ2; θ)

(∫
T

1

n
g(xt, τ1; θ)f(τ1)π(τ1)dτ1

)

≡
n∑
t=1

δtg(xt, τ2; θ).

13



Therefore, R(K̂) is spanned by {g(x1; θ), · · · , g(xn; θ)}. It follows that the singular system

of K̂ is composed of n eigenfunctions ν
(n)
i and n singular values µ

(n)
i . We can extend the

previous result to our case and show that the regularized solution to K̂λ̃ = −ḡ(θ) is

λ̃ = −
n∑
i=1

(
µ

(n)
i

µ
(n)2

i + αn

)
< ḡ(θ), ν

(n)
i > ν

(n)
i ,

where the tilde stands for approximated solution. Because ν
(n)
i ∈ R(K̂), we can write ν

(n)
i =

1/n
∑

j βijg(xj , θ). Carrasco and Florens (2000) show that the vectors βi, for i = 1, ...n, are
the eigenvectors of an n× n matrix C with typical element

cij =
1

n

∫
T
g(xi, τ ; θ)g(xj , τ ; θ)π(τ)dτ

and that its eigenvalues are in fact the µ
(n)
i we need. We can therefore obtain the estimator

using the following procedure:

1. We construct the n× n matrix C

2. We compute the eigenvectors βi and eigenvalues µ
(n)
i for i = 1, ..., n

3. We compute the eigenfunctions of K̂ as follows:

ν
(n)
i =

1

n

n∑
j=1

βjig(θ, xj) i = 1, ..., n

4. We compute λ̃:

λ̃(θ) = −
n∑
i=1

(
µ

(n)
i

µ
(n)2

i + αn

)
< ḡ(θ), ν

(n)
i > ν

(n)
i

5. We estimate θ0 by solving the following problem:

θ̃ = argmin
θ

1

n

n∑
t=1

ρ
(
λ̃(θ)g(xt, θ)

)
. (18)

Because the solution to CGEL includes also an estimate of the probability distribution pt
for t = 1, · · · , n with

∑
t pt = 1, which depends on λ, and that we did not obtain the exact

solution to equation (15), we may, if we intend for example to use the implied probabilities
to obtain efficient estimates of higher moments of gt(θ), have to normalize pt(λ̃) as follows

p̃t =
pt(λ̃)∑n
t=1 pt(λ̃)

, (19)

where

pt(λ̃) =
1

n
ρ′
(
λ̃g(xt; θ̃)

)
.
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For the case in which ρ(v) is quadratic, which does not guarantee the non-negativity of pt(λ̃),
the latter can be transformed according to Antoine et al. (2007).

In order to apply this method, it is convenient to rewrite the objective function in matrix
notation as in Carrasco et al. (2007a). Let us define the n×m matrix β which contains the
eigenvectors of C associated with its m eigenvalues different from 0, and the m×m diagonal
matrix D with typical element Djj :

Djj =
µ

(n)
i

µ
(n)2

i + αn
.

The following optimization problem is equivalent to the one given by equation (18):

θ̃ = argmin
θ

1

n

n∑
t=1

ρ

(
− 1

n
ι′C[βDβ′]C•t

)
, (20)

where ι is an n × 1 vector of ones and C•t is the tth column of C (see Appendix C.1 for the
proof).

In practice, we need to select a tolerance level in order to determine whether the eigenvalues
are considered to be zero or not. Indeed, none of them will be exactly equal to zero. However,
the presence of αn in the denominator of Djj makes it possible to choose m = n.

4.2 Solving a nonlinear operator equation

When we want the solution to a nonlinear problem such as f(x) = 0, we usually construct an
iterative procedure of the form

xi = g(xi−1),

which converges to the fix point g(x) = x, where x is the solution to the initial problem. The
simplest method sets g(x) = x+ωf(x). If the algorithm converges, then we have f(x) = 0 as
required. However, this method, if it converges, is slow if we do not select a proper ω. The
Newton method sets ω = −[f ′(x)]−1 so that the algorithm becomes:

xi = xi−1 − f ′(xi−1)−1f(xi−1).

In order for this method to work, the inverse of the first derivative needs to be bounded. When
f ′(xi−1)−1 is not bounded, it has to be replaced by a generalized inverse. This is similar to the
problem we are facing in this section but with the exception that the solution x is a function
from L2(π).

In the case of CGEL, we need to solve equation(15) which we rewrite as follows (Fn1()
has been replaced by F () for simplicity):

F (λ) ≡ 1

n

n∑
t=1

ρ′(λgt)g(xt; θ) = 0. (21)

So we need the solution to the general nonlinear operator equation F (λ) = 0, where F is a
nonlinear operator from L2(π) to L2(π). As discussed in Section 3, this problem needs to
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be regularized in order to compute a stable solution. The second estimation procedure is
therefore an iterative algorithm which converges to the solution of:

min
λ
‖F (λ)‖2 + αn‖λ− λ0‖2,

so that F (λ) is close to 0 and the solution λ̂ sufficiently smooth. The value of αn determines
how important we consider the smoothness of the solution. If it is set too high, the solution
λ̂ would most likely be a constant (i.e. λ̂(τ1) = λ̂(τ2) ∀τ1, τ2) with F (λ̂) not too close to zero,
since the first term would become negligible. Conversely, a small αn would create an unstable
solution for which F (λ̂) is almost zero. It is the same tradeoff that we face when solving linear
ill-posed problems.

There are many algorithms that reflect this tradeoff. Ramm (2004a) and Ramm (2004b)
present the continuous version of such methods and give the conditions under which they con-
verge to the solution. The discrete algorithm presented by Airayetpan and Ramm (2000) is a
regularized Newton method. It is a Newton method applied to a transformed equation. In-
deed, the Newton method solves F (λ) = 0 with the algorithm λi = λi−1−DF (λi−1)−1F (λi−1)
while the regularized Newton method solves F (λ) + αnλ = 0 which implies the following al-
gorithm:

λi = λi−1 − ωi [DF (λi−1) + αnI]−1 (F (λi−1) + αnλi−1)

where ωi is a sequence that we need to choose to control the speed of convergence. Another
method which uses a regularized inverse which is closer to the one used for the linear case
has been analyzed by Jin (2000). It is a regularized Gauss-Newton method which is defined
as follows:

λi = λi−1 −
[
αnI +DF (λi−1)2

]−1 {DF (λi−1)F (λi−1) + αnλi−1} ,

where the initial value λ0 has been set equal to its asymptotic value, 0. It is the usual starting
value for λ when the parameters are estimated by GEL (see for example Guggenberger (2008)).
If the algorithm converges, the condition of equation (15) is satisfied. Blaschke et al. (1997)
show that the conditions that we impose are sufficient for the convergence of the algorithm.

In order to apply this algorithm, we will present it in matrix form. Because λ enters
equation (15) only through λgt(θ) =

∫
T λ(τ)gt(τ ; θ)π(τ)dτ , we only need to solve for λgt.

Therefore we can obtain the result from the following iterative procedure:

gtλi = gtλi−1 − gt
[
αnI +DF (λi−1)2

]−1 {DF (λi−1)F (λi−1) + αnλi−1} . (22)

Let us define the n× n diagonal matrix V as:

Vtt = ρ′′(λgt),

the n× 1 vector P as:
Pt = ρ′(λgt),

and the n× n matrix C as usual. The following theorem is demonstrated in Appendix C.2.
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Theorem 3. If the conditions of theorem 1 and 2 are satisfied, than CGEL, which is defined
by the conditions of equations (14) and (15), is equivalent to the following procedure: We first
iterate the following until convergence:

[λig] =
{

[CV ]2 + αnI
}−1 {

[CV ]2[λi−1g]− [CV ][CP ]
}
, (23)

with the initial value:
λ0g = −

{
C2 + αnI

}−1
C2ι,

where ι is an n× 1 vector of ones. We then solve the following minimization problem:

1

n

n∑
t=1

ρ(λ̂gt(θ)),

where λ̂gt(θ) is the value to which has converged the algorithm (23).

Notice that we don’t need this iterative procedure for CEEL because in that case, ρ(v) =
ρ0 − v − v2/2, which implies that the first order condition for λ becomes:

1

n

n∑
t=1

(−1− λgt)gt = 0,

which implies that λ̂ is the solution to the linear operator equation K̂λ = −ḡ(θ). We can
then derive the analytical solution of λ̂ by using the results from the previous section and we
obtain:

λ̂CEELḡ(θ) = − 1

n
ι′C[βDβ′]C•t. (24)

That expression can easily be used in ρ(v) to estimate θ or in ρ′(v) to compute the implied
probabilities. It is not like CCUE as shown in Appendix D.1, but it is equivalent in large
samples. In fact, it should be easier numerically to implement than CCUE as it is argued by
Antoine et al. (2007) for the discrete case.

5 Over-identification tests for C-GEL

GEL offers three ways of testing the validity of the moment conditions EP0(gt(θ0)) = 0. Smith
(2004) summarizes them and shows that they are first order equivalent and asymptotically
chi-square with (n− q) degrees of freedom, where q is the number of moment conditions. The
first is the J-test developed by Hansen (1982) which is based on the GMM criterion:

Jgmm = nḡ(θ̂gmm)′K̂−1ḡ(θ̂gmm) ≡ ‖K̂−1/2√nḡ(θ̂gmm)‖2.

In the context of CGEL, two problems arise from this test. First, we need to replace K̂−1 by
the generalized inverse (K̂αn)−1, and second, the test diverges since the number of moment
conditions is infinite. Carrasco and Florens (2000) offer a normalized version of this test
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which is asymptotically N(0, 1). We can apply the same normalization for CGEL since it
is asymptotically equivalent to CGMM. However, the tests will differ in finite sample since
CGEL evaluates K̂αn at θ̂ while CGMM uses a first step estimate.

The test is based on the singular value representation of the CGMM criterion described
in the previous section:

‖(K̂αn)−1/2√nḡ(θ̂)‖2 =
n∑
i=1

(
µ

(n)
i

µ
(n)2

i + αn

)
< ḡ(θ̂), φ

(n)
i >2,

where φ
(n)
i is the orthonormalized eigenfunction ν

(n)
i /‖ν(n)

i ‖ with ‖ν(n)
i ‖2 = µ

(n)
i /n. Let us

define the following variables:

pn =
n∑
i=1

µ
(n)2

i

(µ
(n)2

i + αn)

qn = 2
n∑
i=1

µ
(n)4

i

(µ
(n)2

i + αn)2
.

Then the first test is defined as:

J̃ =
‖(K̂αn)−1/2√nḡ(θ̂)‖2 − pn√

qn
=⇒ N(0, 1),

under the null that the over-identifying moment conditions are satisfied. The proof is given
by Carrasco and Florens (2000).

The second is the Lagrange multiplier test (LM). In the dual problem, λ is the Lagrange
multiplier associated with the sample moment conditions

∑
t ptgt(θ) = 0. It should therefore

be zero if the constraint is not binding. For GEL, the test is defined as follows:

LM = nλ̂′gelK̂λ̂gel.

For CGEL, the same normalization is required. The second test is therefore4:

L̃M =
‖K̂1/2√nλ̂‖2 − pn√

qn
.

The third test is based on the GEL criterion function Pq(λ, θ) (see equation (8)). We can use
it for constructing a likelihood ratio test (LR) for the null hypothesis that λ = 0. It is defined
as follows for GEL:

LR = 2n(Pq(λ̂gel, θ̂gel)− ρ(0)),

which implies the following for CGEL:

L̃R =
2n(P (λ̂, θ̂)− ρ(0))− pn√

qn
.

4To make sure that the reader is not confused with the notation, notice that K̂ is not the same in the LM
and L̃M tests. For the former, K̂λ̂ is

∑
i K̂•iλ̂i, while for the latter it is

∫
T k̂(τ, τ1)λ̂(τ1)π(τ1)dτ1.
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The following theorem shows that the three tests are first order equivalent. Moreover, it gives
a way to compute them using the same matrix notations that we use above for the estimators.

Theorem 4. If Assumptions 1 to 4 are satisfied then J̃ , L̃M and L̃R are first order equivalent
and asymptotically distributed as N(0, 1). Furthermore they can be computed as follows:

J̃ =
ι′(βDβ′ −D)ι√

2ι′D2ι
,

L̃M =

∑n
t=1(gt(θ̂)λ̂)2 − ι′Dι√

2ι′D2ι

and

L̃R =
2
∑n

t=1 ρ(gt(θ̂)λ̂)− 2nρ(0)− ι′Dι√
2ι′D2ι

.

where (gt(θ̂)λ̂) comes from equation (23), β is the n× n matrix containing the n eigenvectors
of C, ι is a vector of ones and D is an n× n diagonal matrix with typical element

Dii =
µ

(n)2

i

(µ
(n)2

i + αn)
.

The proof is given in the Appendix B.3. We can prove the asymptotic normality of the
three tests by showing the first order equivalence of ‖(K̂αn)−1/2√nḡ(θ̂)‖2, ‖K̂1/2√nλ̂‖2 and
2n(P (λ̂, θ̂)− ρ(0)) since Carrasco and Florens (2000) show the result for J̃ .

In small samples, we may want to consider alternative methods since it is unlikely that
the exact distribution of the three tests are symmetric. As suggested by Arelanno et al.
(2011), since the J-test is approximately a quadratic form in normal variables, the Imhof
(1961) approach can be used to compute the p-values. In fact, if we assume that

√
nḡ(θ̂) is

asymptotically N(0,K), then <
√
nḡ(θ̂), φ

(n)
i > is asymptotically N(0, µi) which implies that:

‖(K̂αn)−1/2√nḡ(θ̂)‖2 ≈
n∑
i=1

(
µ

(n)2

i

µ
(n)2

i + αn

)
χ2

1

Imhof (1961) shows how to compute the CDF of the above expression. This is of course not
valid as n goes to infinity but it may improve the size in small samples. We investigate it in
Section 6.

6 A numerical study

As suggested by Nolan (2005), the family of stable distributions offers a good alternative for
modeling heavy-tailed and skewed data such as stock returns. We say that a random variable
follows a stable distribution if linear combinations preserve the shape of the distribution up to
scale and shift, which determine respectively the variance and the expected value when they
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are well defined. Therefore, the normal distribution is stable because the sum of two normal
random variables is also normally distributed. The Cauchy and Lévy distributions are special
cases for which moments are either infinite or undefined. The notation used in this section
follows Nolan (2009) who presents in details the properties of stable distributions.5

These three special cases are the only stable distributions for which the density has a
closed form expression. As a result, the maximum likelihood estimation of the parameters
can only be performed through numerical computation of the likelihood function. However,
there is an analytical representation of its characteristic function. We can therefore base our
estimation on the following continuum of moment conditions:

E
[
eiτxt −Ψ(θ; τ)

]
= 0 ∀ τ ∈ R (25)

where i is the imaginary number, Ψ(θ; τ) is the characteristic function and θ = {ω, β, γ, δ}.
The elements of θ are respectively the characteristic exponent6 and the skewness, the scale and
the location parameters. They are restricted to the parameter space ]0, 2]× [−1, 1]×]0,∞[×R.
Garcia et al. (2006) estimate the parameters using indirect inference and perform a numerical
study to compare it with some other methods. One of them is CGMM and was suggested by
Carrasco and Florens (2002). We therefore use this example to compare the performance of
CGEL with CGMM in small samples. We want to compare the mean-bias, median-bias and
root mean squared errors (RMSE) of the estimators for different choices of αn.

We need to be careful when working with stable distributions because there are more than
one parametrization which implies different analytical forms for the characteristic function.
In order to avoid confusions Nolan (2009) defines the distribution by S(ω, β, γ, δ, pm), where
pm = 0, 1, 2 or 3 defines the type of parametrization used. In this experiment, we follow
Garcia et al. (2006) and Carrasco and Florens (2002) by choosing pm = 1. Notice that when
the moments exist and are finite, γ and δ are note necessarily the variance and the mean
of the distribution. For example, we can represent a N(µ, σ2) by S(2, 0, σ/

√
2, µ, 1). This

parametrization implies the following characteristic function:

Ψ(θ; τ) =

{
exp (−γω|τ |ω[1− iβ(tan πω

2 )(sign(τ))] + iδτ) for ω 6= 1
exp (−γ|τ |[1 + iβ 2

π (sign(τ)) log |τ |] + iδτ) for ω = 1
,

where sign(τ) = 1 if τ > 0, −1 if τ < 0 and 0 otherwise. Notice that β can be poorly
identified when ω is close to 2 as the term tan (πω/2) becomes close to zero. That should
reflect on the properties of the estimators of β.

We compute
∫
R f(τ)g(τ)π(τ)dτ with π(τ) defined as the density of a standardized normal

distribution as for Carrasco and Florens (2002). However, no tan () transformation is done
as they do in order to transform the integrals over R into integrals over a finite interval. The
integrals are computed directly over the interval [−2, 2]. Because of the integrating density, it
makes almost no difference to integrate over a wider interval. Furthermore, it allows a better
approximation of the integrals without being too much computationally demanding.

5See also his web site on stable distributions http://academic2.american.edu/ jpnolan/stable/stable.html
6In general, the characteristic exponent is defined by αn instead of ω. But in this paper, αn represents the

regularization parameter.
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The regularized iterative procedure which computes the solution of λ(θ) is called by the
numerical optimizer each time θ is updated. For some values of θ, it happens that αn is too
small to make the system well-posed. In such case, we have to increase it temporarily. More
precisely, if the inverse of the condition number of ([CV ]2 + αnI) is less than 9.9× 10−15, αn
is raised by 50%. Once the procedure converges, αn returns to its initial value for the next
value of θ. The algorithm is much more stable this way.

The simulations are carried out using R and the random variables are generated by the
rstable generator from the fBasics package of Wuertz and Rmetrics (2010). The start-
ing values are obtained by CGMM using the identity matrix starting at the initial guess
{ω0, β0, γ0, δ0} = {1.1, 0.1, 0.1, 0}. The true values are not used so that we can analyze
how the methods behave when little is known about the distribution7. Finally, instead of
reparametrizing ω and β as in Garcia et al. (2006) to restrict their parameter spaces, we use
the optimizer nlminb which allows inequality constraints. Another possibility is to rescale
the parameters ω and β (done inside the optimizer) to make them move slower to the solution.
We have found that it helps to prevent them from going outside the parameter space.

We perform the Monte Carlo experiment by generating 1000 samples of size equal to 1008.
The true distribution is S(1.7, 0.5, 0.5, 0, 1), which is one of the models studied by Garcia et al.
(2006). The parameters are estimated using CGMM and CGEL, using both the iterative and
singular value decomposition methods, with αn = {0.0001, 0.001, 0.005, 0.01, 0.05, 0.1}. Notice
however that CEEL is only computed once since the iterative procedure for this method is
identical to the one step approximation. We also compute the three tests of over-identifying
restrictions for CGEL and compare their empirical sizes with the J-test of CGMM.

The properties of the estimators are presented in tables (1) to (4), in Appendix E 9. We
can see that the relative performance of CGMM and CGEL depends on which parameter is
estimated and on the value of αn. As explained by Carrasco (2011), we can interpret the
value of αn as a way of selecting the number of moment conditions. As the parameter goes
down, more information contained in the continuum of conditions is used. Following the
second order asymptotic results of Newey and Smith (2004), that should increase the bias of
CGMM. This conclusion is verified except for γ. Its impact on the mean squared errors is
more ambiguous. It seems consistent with the numerical experiment of Carrasco and Florens
(2002) who find that the average αn which minimizes the RMSE is around 0.05.

The impact of αn on the bias of the different CGEL estimators using the iterative pro-
cedure is very similar. In general, the bias seems to increase when αn is smaller except for
γ . Also, we can always find a value for which the bias of CGEL is lower than the bias of
CGMM. As opposed to the bias, the RMSE is very stable and almost always smaller than
the one of CGMM estimator. This is explained by the standard deviations (not reported for

7We intentionally start far away from the true values in order to analyze the ability of the algorithm to
reach the solution. It is of course not recommended in practice, especially with empirical likelihood which
requires in general good starting values to converge.

8Results for n = 200 and the R codes are available upon request.
9Notice that the results cannot be compared directly with the ones obtained by Carrasco and Florens (2002)

even though we use the same sample size because the true distribution estimated is not the same and because
they fix the parameter δ to zero. For example, the larger RMSE that we obtained is explained by the fact that
β is poorly identified by the characteristic function as ω approaches 2.
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compactness) which are smaller and mostly not affected by αn. When it is affected, it tends
to be positively related which suggests that CGEL uses the extra information more efficiently
than CGMM. If we compare the iterative procedure with either CEEL or the approximation
method based on the singular value decomposition (sv-CGEL), the latter is most of the time
less biased but at the cost of a slightly higher RMSE, except for β. However, the RMSE
of both CEEL and sv-CGEL is most of the time lower than CGMM which makes it a good
alternative since it is less computationally demanding than the iterative CGEL.

Most of the results suggest that CGEL may outperform CGMM according to the RMSE
and some times to the bias. It is not consistent with numerical studies on GEL like the one
by Guggenberger (2008) who finds that GEL is much more volatile than GMM. However, his
analysis is based only on linear models estimated by moment conditions constructed from
weak instruments. Besides, the difference between GMM and GEL does not necessarily apply
to CGEL and CGMM. A more complete numerical experiment should be performed in order
to support the conclusions obtained in this section with more confidence. Furthermore, the
optimal αn for CGMM does not seem to be the same for CGEL. It would therefore be an
interesting extension to derive a data-driven method based on higher order expansions to
select αn for CGEL as done by Carrasco and Florens (2002). We could then more easily
compare the methods using their respective optimal αn.

We can also compare our estimators with the maximum likelihood estimator (MLE) based
on numerical computation of the density function. The MLE is the best method for estimating
the parameters of a distribution when the latter is known. We can therefore see whether the
continuum spans enough information to reach the efficiency of MLE. The result is presented in
Table (5). Notice first that the method is more computationally demanding than our methods
because we need to simulate the likelihood each time it is evaluated. It is also very unstable
in the sense that the parameters often tend to go outside the admissible parameter space. In
order to obtain 1000 results we had to generate about 1800 series10. The results show that
CGEL performs almost as well as MLE for some choices of αn. It is even better then MLE
in some cases. However, this result depends on the algorithm used to compute the likelihood
numerically. We may obtain better results with better algorithms. But since CGEL does no
rely on the choice of algorithms to compute the likelihood, it may be more suitable for such
estimations.

The size of the three tests and the one for the J-test with p-values based on Imhof (1961)
are shown in table (6). We can see that αn is negatively related to the size of all tests. They
are above 50% for αn = 0.0001 and close to zero αn = 0.1. It may reflect the instability
of the solution λ̂, on which are based the tests, when αn is small. As for the properties of
the estimators, the value of αn is very important. In General, the J-test performs better
for all iterative GEL methods if we exclude very small αn. Since these small values are also
associated with large bias for the vector of coefficients, a good selection of αn should give us
reliable tests.

Using the Imhof (1961) approach to compute the p-values of the J-test does not make
much difference. Indeed, the rejection rates are almost identical. We could improve the size

10We could probably have obtained a smaller rejection rate by playing with the parameters of the optimizer
but it would have been too time consuming.
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of the tests by using an alternative method based on Anatolyev and Gospodinov (2008) who
suggest to modify the distribution of the tests by using a parameter that depends on the ratio
number of instruments to sample size. They show that it improves the properties of the tests
when the ratio is close to one. It is therefore relevant for CGEL. It could also be improved
by using some bootstrap procedures to compute the finite sample critical values.

7 Conclusion

The CGEL method, which we apply using either the regularized Gauss-Newton algorithm or
the regularized singular value decomposition of the approximated solution, is shown to be
asymptotically equivalent to CGMM. However, we show through a Monte Carlo experiment
that the small samples properties of CGEL mostly outperform those of CGMM at least
according to the root mean squared errors. The results are not necessarily consistent with
what we find in the literature which compares GMM and GEL. In particular, studies often find
that EL is less biased but produces higher mean squared errors than GMM. Our experiment
show the opposite which suggests that the relative performance of GEL and GMM may not
be preserved when the moment conditions are defined on a continuum. As suggested by the
standard deviation, CGEL seems more efficient in using the additional information implied
by a smaller αn. It may therefore constitute an excellent alternative to CGMM

However, the properties of the estimators and the three tests seem to depend heavily on
the value of the regularization parameter. As a result, future studies should include a data-
driven method to select αn which would require either to derive the higher order properties
of the estimators or to develop an adapted bootstrap method such as the one proposed by
Carrasco and Kotchoni (2010). The same type of expansion or Monte Carlo method should
also be developed to improve the properties of the three tests.

Appendix

A Overview of some concepts

A.1 CGMM

We present here a brief overview of CGMM. It is developed by Carrasco and Florens (2000),
summarized by Carrasco et al. (2007b) and Carrasco et al. (2007a) show how it can be
implemented by expressing the objective function in matrix form. The estimator is defined
as:

θ̂cgmm = arg min
Θ
‖Bnḡ(θ)‖,

where Bn is a sequence of random operators from L2(π) → L2(π) which converges to the
linear bounded operator B. It plays the same role as the weighting matrix of GMM. In order
to achieve efficiency, the operator B must be defined as the inverse of the square root of the
asymptotic covariance operator of

√
nḡ(θ0), K. Because of its properties, the inverse of K

is unbounded. As a result, the objective function is ill-posed because it can be written as
< ḡ(θ),K−1ḡ(θ) >, where the second term of the inner product is the solution to Kx = ḡ(θ).
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A stable and unique solution can be computed using the Tikhonov approach for which the
inverse of the linear operator is substituted by the regularized inverse

(Kαn)−1 = (αnI +K2)−1K.

The feasible optimal CGMM estimator, in which K is replaced by the consistent estimate K̂,
is therefore defined as:

θ̂cgmm = arg min
Θ
‖(K̂αn)−1/2ḡ(θ)‖.

In order for θ̂cgmm to be consistent, certain conditions are required. One of them imposes

a rate of convergence for αn which must satisfy nα
3/2
n → ∞ as αn goes to zero, which

implies that αn = O(n−2/3+η) for 0 < η < 2/3. The condition on αn is required in order
for ‖(K̂αn)−1/2fn − K−1/2f‖ to be op(1) for any fn converging to f . To prove asymptotic
normality, the required rate of convergence of αn is different. We need nα3

n → ∞ as αn
goes to zero because we need ‖(K̂αn)−1fn − K−1f‖ to be op(1). The latter implies that
αn = O(n−1/3+η) for 0 < η < 1/3. Given these conditions Carrasco and Florens (2000) show
that

√
n(θ̂cgmm − θ0) is asymptotically distributed as N(0, [GK−1G]−1).

In order to compute the two step CGMM estimator, we first solve:

θ̃ = arg min
Θ
‖ḡ(θ)‖,

in which the identity operator has been used instead of (K̂αn)−1, and then:

θ̂cgmm = arg min
Θ
ṽ′
[
I − C(αnI + C2)−1C

]
ṽ,

where C is the same matrix defined in Section 4.1 and ṽ = {ṽ1, ..., ṽn} with ṽt = gt(θ̃)ḡ(θ).

A.2 Fréchet derivative

We summarize in this section the concept of Fréchet derivatives and show some results that
are used in the proofs bellow (results from this section can be found in Zeidler (1995)).

Consider two Hilbert spaces X and Y , and the functional F: X → Y . For h and x ∈ X,
let define the function φ : R→ Y as:

φ(s) = F (x+ sh)

Assuming that φ′(0) exists for all h, the Gâteaux derivative of F at x ∈ X, DF (x), is defined
by the following:

φ′(0) = DF (x)h

Furthermore, DF (x) is the Fréchet derivative of F evaluated at x ∈ X if and only if

lim
h→0

‖F (x+ h)− F (x)−DF (x)h‖
‖h‖

= 0. (26)
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As an example, we can compute the linear approximation of the first order condition (13).
First, let us consider equation (13) for any λ ∈ L2(π) with (λgt) being in the domain of ρ(v)
for all t (subscripts have been omitted for clarity):

F (λ) ≡ 1

n

n∑
t=1

ρ′(λgt)gt.

We first need to find the Gâteaux derivative and then show that it satisfies condition (26):

φ(s) =
1

n

n∑
t=1

ρ′
(

(λ+ sh)gt

)
gt

which implies:

φ′(0) =
1

n

n∑
t=1

ρ′′(λgt)gt[gth].

Since gt and h ∈ L2(π), [gth] =
∫
gthdπ exists, which implies that the above expression exists

for all h ∈ L2(π). It follows that the Gâteaux derivative is

DF (λ) =
1

n

n∑
t=1

ρ′′(λgt)gtgt.

We can see that it is also a Fréchet derivative:

‖F (λ+ h)− F (λ)−DF (λ)h‖
‖h‖

=
‖ 1
n

∑n
t=1 gt (ρ′(λgt + hgt)− ρ′(λgt)− ρ′′(λgt)hgt) ‖

‖h‖

≤ 1

n

n∑
t=1

‖gt (ρ′(λgt + hgt)− ρ′(λgt)− ρ′′(λgt)hgt) ‖
‖h‖

=
1

n

n∑
t=1

∣∣ρ′(λgt + hgt)− ρ′(λgt)− ρ′′(λgt)hgt
∣∣ ‖gt‖
‖h‖

=
1

n

n∑
t=1

∣∣ρ′′′(ξ)(hgt)2/2
∣∣ ‖gt‖
‖h‖

=
1

n

n∑
t=1

O(h2)
‖gt‖
‖h‖

−→ 0

as h goes to zero, where ξ ∈ [λgt, hgt]. We have used the mean value Theorem for ρ(v) which
is justified by Assumption 5. Using similar arguments, we can show that the second order
Fréchet derivative of F (λ) is:

D2F (λ) =
1

n

n∑
t=1

ρ′′′(λgt)gtgtgt
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If we come back to the first order condition (13), we can expand it around λ̂ = 0, using the
Taylor formula in function space with the integral version of the remainder term (by Theorem
4.C. of Zeidler (1995), Assumption 5 is enough for the existence of such representation):

Fn1(λ̂) = Fn1(0) +DFn1(0)λ̂+

∫ 1

0
(1− δ)D2Fn1(δλ̂)λ̂2dδ,

where

D2Fn1(δλ̂) =
1

n

n∑
t=1

ρ′′′(δλ̂gt)gtgtgt

= ρ3
1

n

n∑
t=1

gtgtgt +
1

n

n∑
t=1

[ρ′′′(δλ̂gt)− ρ3]gtgtgt

≡ ρ3Ŝ + op(1)

by the continuity of ρ′′′(v), ρ′′′(0) = ρ3, λ̂ = Op(n
−1/2) and Lemma 1. Ŝ, which represents the

estimator of the skewness operator of gt with kernel ŝ(τ1, τ2, τ3) = 1/n
∑

t gt(τ1)gt(τ2)gt(τ3),
is bounded by assumption. Therefore,

D2Fn1(δλ̂)λ̂2 = ρ3
1

n

n∑
t=1

[
gtgtgt

]
λ̂2 + op(‖λ̂‖2)

= ρ3
1

n

n∑
t=1

gt[gtλ̂]2 + op(‖λ̂‖2)

= ρ3‖λ̂‖2Ŝφ2 + op(‖λ̂‖2)

= Op(‖λ̂‖2) + op(‖λ̂‖2)

= Op(n
−1),

where φ = λ̂/‖λ̂‖. It follows that:

0 = Fn1(λ̂) = Fn1(0) +DFn1(0)λ̂+Op(n
−1).

which implies

0 = −ḡ(θ)−

(
1

n

n∑
t=1

gt(θ)gt(θ)

)
λ̂+Op(n

−1) = −ḡ(θ) +−K̂λ̂+Op(n
−1).

B Proofs

B.1 Theorem 1

The steps are similar to the proof of Theorem 3.1 of Newey and Smith (2004). The following
lemma is almost identical to their Lemma A1.
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Lemma 1. If Assumption 2 is satisfied, then for any ζ with 1/ν < ζ < (1 − 2χ)/2 and
Λζ = {λ : ‖λ‖ < n−ζ}

sup
t,λ∈Λζ ,θ∈Θ

|λgt(θ)|
P→ 0,

and Λζ ⊆ Λn w.p.a.1, where ν > 2/(1− 2χ) and 0 < χ < 1/2.

Proof. Using Cauchy-Schwarz inequality and Lemma D.2 of Kitamura et al. (2004), supt,λ∈Λζ ,θ∈Θ |λgt(θ)|
is bounded by ‖λ‖ = O(n−ζ) times [maxt supθ |gt(θ)|] = Op(n

1/ν). It goes to zero by construc-
tion because ζ > 1/ν. Also, 0 is in the domain of ρ(v) which implies that Λζ will eventually
be in the domain of ρ(v).

The only difference here is that Newey and Smith (2004) assume ν > 2 and 1/ν < ζ < 1/2,
which is just a special case. It allows us to control the speed of convergence of λ.

The proof of the following lemma is different from the one in Newey and Smith (2004)
because λ̂ is a regularized solution. Therefore, we cannot define it as arg maxP (λ, θ̄) for some
convergent θ̄. However, we do use the fact that αn = o(1) which implies that P (λ̂, θ) ≥ P (λ, θ)
w.p.a.1 for any λ and θ.

Lemma 2. If Assumptions 1 to 4 are satisfied, αn goes to zero, nα2
n goes to infinity and if

θ̄
P→ θ0 and ḡ(θ̄) = Op(n

−1/2), then

λ̄ = arg min
Λn

V (λ, θ̄) ≡
(
‖Fn1(λ, θ̄)‖2 + αn‖λ‖2

)
exists w.p.a.1, λ̄ = Op(1/(α

√
n)) and P (λ̄, θ̄) ≤ ρ0 +Op(1/(α

2
nn)), where ρ0 = ρ(0).

Proof. Let us define λ̃ = arg minΛζ V (λ, θ̄). Then:

V (0, θ̄) ≥ V (λ̃, θ̄)

= V (0, θ̄) + V ′(0, θ̄)λ̃+

[∫ 1

0
(1− δ)V ′′(δλ̃, θ̄)dδ

]
λ̃2,

where
V (0, θ̄) = ‖Fn1(0, θ̄)‖2 = ‖ḡ(θ̄)‖2,

V ′(0, θ̄) = 2DFn1(0, θ̄)Fn1(0, θ̄) = 2K̂(θ̄)ḡ(θ̄)

and

V ′′(δλ̃, θ̄) = 2
[
D2Fn1(δλ̃, θ̄)Fn1(δλ̃, θ̄) +DFn1(δλ̃, θ̄)2 + αnI

]
= 2

[
1

n

n∑
t=1

ρ′′′(δλ̃gt(θ̄))gt(θ̄)gt(θ̄)gt(θ̄)

][
1

n

n∑
t=1

ρ′(δλ̃gt(θ̄))gt(θ̄)

]

+2

[
n∑
t=1

ρ′′(δλ̃gt(θ̄))gt(θ̄)gt(θ̄)

]2

+ 2αnI

= 2
[
(−ρ3)Ŝ(θ̄)ḡ(θ̄) + K̂(θ̄)2 + αnI + op(1)

]
,
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by Lemma 1 since it implies, with the properties of ρ(v), that ρ′(δλ̃gt(θ̄)), ρ
′′(δλ̃gt(θ̄)) and

ρ′′′(δλ̃gt(θ̄)) converge in probability to -1, -1 and ρ3 respectively. The term Ŝ(θ̄)ḡ(θ̄) is a linear
operator with kernel

∫
T ŝ(τ1, τ2, τ)ḡ(τ ; θ̄)π(τ)dτ , where ŝ(τ1, τ2, τ) = 1/n

∑
t gt(τ1; θ̄)gt(τ2; θ̄)gt(τ ; θ̄).

It is Op(n
−1/2) by the assumption on ḡ(θ̄) and the boundness of the skewness operator. It

follows that
V ′′(δλ̃, θ̄) = 2(K̂(θ̄)2 + αnI) + op(1),

and then, ∫ 1

0
(1− δ)V ′′(δλ̃, θ̄)dδ = 2

[
K̂(θ̄)2 + αnI + op(1)

] ∫ 1

0
(1− δ)dδ

=
[
K̂(θ̄)2 + αnI + op(1)

]
,

where K̂(θ̄)2 + αnI is a strictly positive definite linear operator since αn > 0. It follows that

‖ḡ(θ̄)‖2 ≥ ‖ḡ(θ̄)‖2 + 2K̂(θ̄)ḡ(θ̄)λ̃+ [K̂(θ̄)2 + αnI + op(1)]λ̃2

0 ≥ 2K̂(θ̄)ḡ(θ̄)λ̃+ [K̂(θ̄)2 + αnI + op(1)]λ̃2

0 ≤ −2K̂(θ̄)ḡ(θ̄)λ̃− [K̂(θ̄)2 + αnI + op(1)]λ̃2

≤ C1‖ḡ(θ̄)‖‖λ̃‖ − [K̂(θ̄)2 + αnI + op(1)]λ̃2

≤ C1‖ḡ(θ̄)‖‖λ̃‖ − C2‖λ̃‖2 − op(‖λ̃‖2),

The second last inequality comes from:∣∣∣K̂(θ̄)ḡ(θ̄)λ̃
∣∣∣ ≤ ‖K̂(θ̄)ḡ(θ̄)‖‖λ̃‖

= ‖λ̃‖

(
n∑
t=1

µ2
t < φt, ḡ(θ̄) >2

)1/2

≤ [max
t
µt)]‖λ̃‖

(
n∑
t=1

< φt, ḡ(θ̄) >2

)1/2

= [max
i

(µi)]‖λ̃‖‖ḡ(θ̄)‖

and

−[K̂(θ̄)2 + αnI]λ̃2 = −
n∑
t=1

(µ2
t + αn) < φt, λ̃ >

2

≤ −[min
t

(µ2
t + αn)]

n∑
t=1

< φt, λ̃ >
2

= −[min
t

(µ2
t + αn)]‖λ̃‖2
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where µt and φt are the eigenvalues and eigenfunctions of K̂ (we have omitted their dependence
on the sample size for simplicity). Therefore, C1 = maxt µt, which is bounded away from
zero, and C2 = mint(µt+αn) with is Op(αn) since the smallest eigenvalue of K̂ is not bounded
away from zero. Therefore, we have

C2‖λ̃‖2 + op(‖λ̃‖2) ≤ C1‖ḡ(θ̄)‖‖λ̃‖

C2‖λ̃‖+ op(‖λ̃‖) ≤ C1‖ḡ(θ̄)‖ = Op(n
−1/2),

which implies ‖λ̃‖ = Op(n
−1/2/C2) = Op(1/(αn

√
n)). Notice that without αn, the rate of

convergence of λ̃ is undefined since nothing guarantees that the smallest eigenvalue of K̂2 is
strictly positive. However, the eigenvalues of K are strictly positive. Therefore, αn must go to
zero at a speed slower than Op(‖K̂2 −K2‖) = Op(n

−1/2) (see Carrasco and Florens (2000)).
This is satisfied since we required that nα2

n goes to infinity. Because Λζ ⊆ Λn w.p.a.1. The
second result follows.

Notice that if it was not for the restriction imposed by the domain of ρ(v), the solution
would exist in small sample as well because αn guarantees that the problem is well-posed.
This restriction applies only to CEL because in this case the domain of ρ(v) is ]−∞, 1[. For
the other CGEL methods considered here, the solution exists always. This is shown using
Theorem 1 of Seidman and Vogel (1989).

If we substitute the solution in the objective function of CGEL we obtain:

P (λ̄, θ̄) = ρ0 − ḡ(θ̄)λ̄+

[∫ 1

0
(1− δ)

(
1

n

n∑
t=1

ρ′′(δλ̄gt(θ̄))gt(θ̄)gt(θ̄)

)
dδ

]
λ̄2

≤ ρ0 + ‖ḡ(θ̄)‖‖λ̄‖+ C‖λ̄‖2

= ρ0 +Op(1/(αnn)) +Op(1/(α
2
nn))

= ρ0 +Op(1/(α
2
nn))

by Lemma 1 and the above results.

Lemma 3. If Assumptions 1 to 4 are satisfied, and αn = O(n−χ) with 0 < χ < 1/2 and
ν > 2/(1− 2χ) in Assumption 2b), then ḡ(θ̂) = Op(1/(αn

√
n)) = op(1).

Proof. All we need is to show that we can obtain the same inequality as in Lemma A3 of
Newey and Smith (2004). Let λ̃ = −n−ζ ḡ(θ̂)/‖ḡ(θ̂)‖, where 1/χ < ζ < 1/2 − ν, then by
Lemma A3 of Newey and Smith (2004):

P (λ̃, θ̂) ≥ ρ0 + n−ζ‖ḡ(θ̂)‖ − Cn−2ζ

Because λ̂ solves the regularized first order condition, we cannot say that P (λ̂, θ̂) ≥ P (λ̃, θ̂).
But it holds w.p.a.1 because as αn goes to zero, the first order condition for λ converges to
zero. Therefore, we have, w.p.a.1,

ρ0 + n−ζ‖ḡ(θ̂)‖ − Cn−2ζ ≤ P (λ̃, θ̂) ≤ P (λ̂, θ̂) ≤ P (λ̂, θ0) ≤ ρ0 +Op(1/(α
2
nn))
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It follows that

ρ0 + n−ζ‖ḡ(θ̂)‖ − Cn−2ζ ≤ ρ0 +Op(1/(α
2
nn))

= ρ0 +Op(n
−1+2χ)

Therefore
‖ḡ(θ̂)‖ ≤ Op(n−1+2χ+ζ) + COp(n

−ζ) = Op(n
−ζ)

because ζ < 1/2−χ which implies −1+2χ+ζ < χ−1/2 < −ζ. The rest is identical to Newey
and Smith (2004). We pick λ̄ = −εnḡ(θ̂) with εn = op(1), which is in Λn w.p.a.1 and use

the same saddle point argument as above. We then obtain εn‖ḡ(θ̂)‖2 = Op(1/(α
2
nn)) which

implies ‖ḡ(θ̂)‖2 = Op(1/(α
2
nn)) = op(1).

Proof of Theorem 1. The proof is straightforward using Lemma 1 to 3 and using the same
arguments as Newey and Smith (2004) for Theorem 3.1: (i) First we know from Lemma 3
that ḡ(θ̂) = op(1) and by continuity of g(θ) that supθ ‖E[g(θ)] − ḡ(θ)‖ converges to zero in
probability. It follows that:

‖E[g(θ̂)]‖ ≤‖ḡ(θ̂)‖+ ‖E[g(θ̂)]− ḡ(θ̂)‖
≤‖ḡ(θ̂)‖+ sup

θ
‖E[g(θ)]− ḡ(θ)‖

p−→ 0

By uniqueness of the condition E[g(θ0)] = 0, θ̂ must converge to θ0. The estimator θ̂ can then
be used in Lemma 2 to show the convergence of λ̂.

B.2 Theorem 2

In order to prove asymptotic normality we first recall the regularized first order conditions:

DF (λ, θ)F (λ, θ) + αnλ = 0, (27)

1

n

n∑
t=1

ρ′ (λgt)λGt = 0, (28)

where θ has been explicitly included in F () because we will have to expand it around λ = 0
and θ0. Notice that the subscript of Fn1() as been omitted for notational convenience. DF ()
is the Fréchet derivative of F (). It is an integral operator with kernel:

DF (τ1, τ2) =
1

n

n∑
t=1

ρ′′(λgt)gt(τ1)gt(τ2).

It follows that:

[DF (λ, θ)F (λ, θ)](τ) =

∫
T

{
1

n

n∑
t=1

ρ′′(λgt)gt(τ)gt(τ2)

}{
1

n

n∑
s=1

ρ′(λgs)gs(τ2)

}
π(τ2)dτ2.

30



We will denote F ′() as the derivative of F () with respect to θ. It is an operator from L2(π)
to Rp or from Rp to L2(π) depending on what turns out to be in front of it. It should always
be clear from the context. We first expand equation (27) about λ = 0 and θ = θ0. We denote
F0, DF0, F ′0 and so on, as the operators evaluated at the true value:

0 = DF (λ̂, θ̂)F (λ̂, θ̂) + αnλ̂

= DF0F0 +
[
D2F0F0 +DF0DF0 + αnI

]
λ̂

+
[
DF ′0F0 +DF0F

′
0

]
(θ̂ − θ0) +Op(‖λ̂‖2 + ‖θ̂ − θ0‖2),

where D2F is the Fréchet derivative of DF and DF ′ is the derivative of DF with respect to θ.
Let us develop each term one by one (recall that ρ′(0) = ρ′′(0) = −1 and define ρ3 = ρ′′′(0)):

DF0 =
1

n

n∑
t=1

ρ′′(0)gtgt = −K̂(θ0)

F0 =
1

n

n∑
t=1

ρ′(0)gt = −ḡ(θ0).

It follows that:
DF0F0 = K̂(θ0)ḡ(θ0)

and

D2F0 =
1

n

n∑
t=1

ρ′′′(0)gtgtgt = ρ3Ŝ(θ0),

where Ŝ if the estimated skewness operator. It follows that:

D2F0F0 = −ρ3Ŝ(θ0)ḡ(θ0).

The other terms can be obtained in the same way. The expansion of the regularized first
order conditions is then:

0 = K̂0ḡ0 +
{
K̂2

0 − ρ3Ŝ0ḡ0 + αnI
}
λ̂

+
{

[2Ḡg0]ḡ0 + K̂0Ḡ0

}
(θ̂ − θ0) +Op(n

−1).

The second equation can be expanded in the same way:

0 = −G0λ̂+Op(n
−1).

We can rewrite the above equations in the following compact representation:

0 = −B +A1λ̂+A2(θ̂ − θ0) +Op(n
−1) (29)

0 = A3λ̂+Op(n
−1), (30)

where:
B = −K̂0ḡ0,
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A1 = (K̂2
0 + αnI) +Op(n

−1),

because Ŝ0ḡ0 and λ̂n are Op(n
−1/2),

A2 = K̂0Ḡ0 +Op(n
−1/2)

and
A3 = Ḡ0.

We can solve the system to obtain the following:

√
nλ̂ = [I −A−1

1 A2(A3A
−1
1 A2)−1A3]A−1

1

√
nB + op(1)

and √
n(θ̂ − θ0) = (A3A

−1
1 A2)−1A3A

−1
1

√
nB + op(1).

If we analyze the last term of each equation, we have:

−A−1
1

√
nB = (K̂2

0 + αnI)−1K̂0[
√
nḡ0] + op(n

−1)

= (K̂α0
0 )−1[

√
nḡ0] + op(n

−1)

= K−1g +
{

(K̂αn
0 )−1[

√
nḡ0]−K−1g

}
+ op(n

−1)

= K−1g + op(1)

as n goes to infinity, αn goes to zero and nα3
n →∞ by theorem 7 (ii) of Carrasco and Florens

(2000), where g ∼ N(0,K). Therefore, A−1
1

√
nB converges to N(0,K−1) (See appendix A.1

for details on K̂αn). Using the convergence properties of A1, A2 and A3, we obtain:

√
nλ̂

L→
[
I −K−1G(GK−1G)−1G

]
N(0,K−1)

and √
n(θ̂ − θ0)

L→
[
(GK−1G)−1G

]
N(0,K−1).

The rest of the proof follows by simple manipulations.

B.3 Theorem 4

In Appendix A.2, it is shown that

K̂λ̂ = −ḡ(θ̂) + op(1).

It follows that
(K̂αn)−1/2K̂λ̂ = −(K̂αn)−1/2ḡ(θ̂) + op(1).

Theorem 7 (i) of Carrasco and Florens (2000) implies that

(K̂αn)−1/2K̂fn = K̂1/2fn + op(1).

which proves the first order equivalence of ‖
√
nK̂1/2λ̂‖ and ‖

√
n(K̂αn)−1/2ḡ(θ̂)‖.
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In order to show the first order equivalence of L̃R, we expand the CGEL objective function
about λ = 0:

2nP (λ̂, θ̂) = 2nP (0, θ̂) + 2nPλ(0, θ̂)λ̂+ 2nλ̂Pλλ(λ̃, θ̂)λ̂

= 2ρ(0)− 2nḡ(θ̂)λ̂+ nλ̂

(
1

n

n∑
t=1

ρ′′(λ̃gt(θ̂))gt(θ̂)gt(θ̂)

)
λ̂

= 2ρ(0)− nλ̂

(
1

n

n∑
t=1

gt(θ̂)gt(θ̂)

)
λ̂+ op(1)

= 2ρ(0)− nλ̂K̂λ̂+ op(1)

by Lemma 1, where λ̃ ∈ [0, λ̂].
The second part of the theorem follows by simple manipulation using the singular value

representation of the inverse problem solution. The CGMM objective function can be written
as:

‖(K̂αn)−1/2√nḡ(θ̂)‖2 =

n∑
i=1

(
µ

(n)2

i

µ
(n)2

i + αn

)
< ḡ(θ), φ

(n)
i >2

µ
(n)
i

,

where

φ
(n)
i =

ν
(n)
i

‖ν(n)
i ‖

,

and

‖ν(n)
i ‖

2 =

〈
1

n

n∑
j=1

βjigj ,
1

n

n∑
j=1

βjigj

〉

=
1

n2

n∑
j=1

n∑
l=1

βjiβli

∫
gj(τ)gj(τ)π(τ)dτ

=
1

n

n∑
j=1

n∑
l=1

βjiβliCjl

=
1

n

n∑
j=1

βji (Cj•βi)

=
1

n

n∑
j=1

βji

(
µ

(n)
i βji

)

=
µ

(n)
i

n
‖βi‖2 =

µ
(n)
i

n
.
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It follows that

<
√
nḡ(θ̂), φ

(n)
i > =

〈
1√
n

n∑
t=1

gt,
1√
nµ

(n)
i

n∑
j=1

βjigj

〉

=
1

n

√
µ

(n)
i

n∑
t=1

n∑
j=1

βji

∫
gt(τ)gj(τ)π(τ)dτ

=
1√
µ

(n)
i

n∑
t=1

n∑
jk=1

βjiCtj

=
1√
µ

(n)
i

n∑
t=1

Ct•βi =
1√
µ

(n)
i

n∑
t=1

µ
(n)
i βti

=

√
µ

(n)
i ι′βi.

Therefore, the CGMM objective function becomes:

‖(K̂α)−1/2√nḡ(θ̂)‖2 =
n∑
i=1

(
µ

(n)2

i

µ
(n)2

i + αn

)
(ι′βi)

2,

which concludes the proof for J̃ . The proof of the L̃M representation is much simpler:

λ̂K̂λ̂ =

∫ ∫
λ̂(τ1)λ̂(τ2)

(
1

n

n∑
t=1

gt(τ1)gt(τ2)

)
π(τ1)π(τ2)dτ1dτ2

=
1

n

n∑
t=1

∫
λ̂(τ1)gt(τ1)π(τ1)dτ1

∫
λ̂(τ2)gt(τ2)π(τ2)dτ2

=
1

n

n∑
t=1

(λ̂gt)
2.

The result follows.

C Computation of CGEL

C.1 Computation using the singular value decomposition.

We suppose that C has m eigenvalues different from zero. We define β as the n ×m matrix
containing the m eigenvectors associated with the eigenvalues. We can therefore write the
solution as:

λ̃ = −
m∑
i=1

(
µ

(n)
i

µ
(n)2

i + αn

)
< ĝ, ν

(n)
i > ν

(n)
i .

Numerically, the truncation parameter m can be set equals to the rank of C. This will allow
m to increase with the sample size since, as n goes to infinity and K̂ converges to K, the rank
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goes to infinity. Because it is not λ but < gt, λ > which enters the objective function, we only
need to compute the latter (θ has been omitted for simplicity):

< gt, λ̃ >= −
m∑
i=1

(
µ

(n)
i

µ
(n)2

i + αn

)
< ĝ, ν

(n)
i >< gt, ν

(n)
i >,

where:

< gt, ν
(n)
j > =

∫
T
gt(τ)

(
1

n

m∑
i=1

βijgi(τ)π(τ)dτ

)

=
1

n

n∑
i=1

βij

∫
T
gt(τ)gi(τ)π(τ)dτ

=
n∑
i=1

βijCti

= Ct•βj ,

where Ct• is the tth line of C. We can do the same for the other inner product:

< ĝ, ν
(n)
j > =

∫
T
ĝ(τ)

(
1

n

m∑
i=1

βijgi(τ)π(τ)dτ

)

=

∫
T

(
1

n

n∑
t=1

gt(τ)

)(
1

n

m∑
i=1

βijgi(τ)π(τ)dτ

)

=
1

n2

n∑
i=1

n∑
t=1

βij

∫
T
gt(τ)gi(τ)π(τ)dτ

=
1

n

n∑
i=1

n∑
t=1

βijCti

=
1

n

n∑
t=1

Ct•βj

=
1

n
ι′Cβj ,

where ι is a n× 1 vector of ones. Therefore we can write:

< gt, λ̃ > = −
m∑
i=1

(
µ

(n)
i

µ
(n)2

i + αn

)[
1

n
ι′Cβi

]
[Ct•βi]

= − 1

n

[
ι′C
] m∑
i=1

(
µ

(n)
i

µ
(n)2

i + αn

)[
βiβ
′
i

]
C•t

= − 1

n
ι′C
(
βDβ′

)
C•t,
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where D is the diagonal matrix defined in the text. The objective function is therefore:

1

n

n∑
t=1

ρ

(
− 1

n
ι′C
(
βDβ′

)
C•t

)
.

C.2 Computation using the regularized Gauss-Newton method

To simplify the notation, we will set gt ≡ gt(θ), λ ≡ λi−1, λ′ ≡ λi, pt = ρ′(λgt), p
′
t = ρ′(λ′gt),

p2
t = ρ′′(λgt) and p′2t = ρ′′(λ′gt). We want to rewrite the following algorithm:

λ′ = λ−
{
DF (λ)2 + αnI

}−1 {DF (λ)F (λ) + αnλ}

which can be written as:{
DF (λ)2 + αnI

}
λ′ =

{
DF (λ)2 + αnI

}
λ−DF (λ)F (λ)− αnλ

= DF (λ)2λ−DF (λ)F (λ).

What we want to do is to rewrite each term, multiply them by gs(τ1)π(τ1) and integrate. The
first term of the left hand side is:

DF (λ)2λ′ =

∫
T

{∫
T

(
1

n

n∑
t=1

p2
t gt(τ1)gt(τ2)

)(
1

n

n∑
l=1

p2
l gl(τ2)gl(τ3)

)
π(τ2)dτ2

}
λ′(τ3)π(τ3)dτ3

=
1

n2

∑
t

∑
l

p2
t p

2
l gt(τ1)

(∫
T
gtglπdτ2

)(∫
T
glλ
′πdτ3

)
=

1

n

∑
t

∑
l

p2
t p

2
l gt(τ1)Ctl < gl, λ

′ > .

Once we apply the transformation, the term becomes:[
DF (λ)2λ′

]
gs =

∫
T

1

n

∑
t

∑
l

p2
t p

2
l gt(τ1)Ctl < gl, λ

′ > gs(τ1)π(τ1)dτ1

=
1

n

∑
t

∑
l

p2
t p

2
lCtl < gl, λ

′ >

∫
T
gt(τ1)gs(τ1)π(τ1)dτ1

=
∑
t

∑
l

p2
t p

2
lCtl < gl, λ

′ > Cts

=
∑
t

Ctsp
2
t

[
Ct•V < g, λ′ >

]
= Cs•V CV < g, λ′ >,

where V is defined in the text and < g, λ > is the n× 1 vector with typical element < gt, λ >.
Since it has to be valid for all s = 1, · · · , n, The first term on the left hand side can be written
as follows: [

DF (λ)2λ′
]
g = (CV )2 < g, λ′ > .
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It follows that the first term of the right hand side is:[
DF (λ)2λ

]
g = (CV )2 < g, λ > .

Clearly, the second term of the left hand side is simply αn < gt, λ
′ >. The left hand side can

therefore be written as: {
(CV )2 + αnI

}
< g, λ′ > .

The second term on the right hand side is:

DF (λ)F (λ) =

∫
T

[
1

n

∑
t

p2
t gt(τ1)gt(τ2)

](
1

n

∑
l

plgl(τ2)

)
π(τ2)

=
1

n2

∑
t

∑
l

p2
t p

2
l gt(τ1)

∫
T
gt(τ2)gl(τ2)π(τ2)dτ2

=
1

n

∑
t

∑
l

p2
t p

2
l gt(τ1)Ctl.

If we apply the transformation it becomes:

[DF (λ)F (λ)] gs =

∫
T

1

n

∑
t

∑
l

p2
t p

2
l gt(τ1)Ctlgs(τ1)π(τ1)dτ1

=
∑
t

∑
l

p2
t p

2
lCtlCts.

For all s = 1, · · · , n the term can be written as:

CV CP,

where P is defined in the text. We can therefore rewrite the iterative procedure as follows:{
(CV )2 + αnI

}
< g, λ′ >= (CV )2 < g, λ > −CV CP,

which implies

< g, λ′ >=
{

(CV )2 + αnI
}−1 {

(CV )2 < g, λ > −CV CP
}
.

If we start with λ0 = 0, then V = I and P = ι which gives us the starting value:

< g, λ′ >=
{
C2 + αnI

}−1 {−C2ι
}

= −
{
C2 + αnI

}−1
C2ι.

D CCUE and CEEL

D.1 Note on CCUE

In Section 4.1, we argue that the exact solution of λ̂(θ), in the case of CEEL, can be obtained
from the linear ill-posed problem K̂λ̂ = −ḡ(θ). In this case, the iterative procedure stops
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after the first iteration and the solution is λ̂(θ) = −(K̂αn)−1ḡ(θ). Because ρ() is quadratic,
we can write the objective function as:

P (λ̂(θ), θ) = ρ(0) + ḡ(K̂αn)−1ḡ − ḡK̂(K̂αn)−2ḡ/2

= ρ(0) +
1

2
ḡ(K̂αn)−1ḡ + op(1),

because K̂(K̂αn)−2 = (Kαn
n )−1 + op(1). Therefore, CEEL is equivalent to CCUE, defined as

CGMM in which K̂αn(θ̃) is replaced by K̂αn(θ), only asymptotically.

D.2 CEEL and the ill-posedness of CGEL

The case in which ρ(v) is quadratic offers a way to show that linear and nonlinear ill-posed
problems are very different. If we consider the following system of n linear equations Ax = y,
in which the matrix A is poorly conditioned, the stability of the solution is an issue only if the
right-hand side is random. In CGMM, we need the solution to Kx = ḡ in order to compute
the objective function. Because ḡ is random, the properties of K imply that the system is
ill-posed. In nonlinear system of equations, the problem can be ill-posed even if the right-hand
side is not random as in equation (13). For example, when the number of conditions is finite
and ρ(v) = −v − 0.5v2, the equation is:

Fn1(λ) ≡ 1

n

n∑
t=1

(−1− g′tλ)gt = 0,

which implies that λ̂(θ) is the solution to the following system of linear equations:

K̂λ̂(θ) = −ḡ

Since ḡ is random, the solution is unstable if K̂ is poorly conditioned. For the case of a
continuum, it is ill-posed by the properties of the covariance operator. The randomness of the
left-hand side Fn1(λ) is therefore as important as the randomness of the right-hand side for
the stability of the solution, as opposed to linear ill-posed problem. Equation (13) is therefore
ill-posed.
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E Results from the numerical experiment

Statistics CGMM iter-CEL iter-CET sv-CEL sv-CET CEEL

Mean-bias

α = 0.1 0.00511 0.00224 0.00515 0.05656 0.06127 0.06306
α = 0.05 0.00151 0.01083 0.02337 0.05853 0.06555 0.05454
α = 0.01 0.00748 0.04408 0.06147 0.03742 0.02964 0.03033
α = 0.005 0.00967 0.04968 0.07106 0.03386 0.03620 0.03503
α = 0.001 0.00975 0.09151 0.11687 0.02441 0.02269 0.02397
α = 0.0001 0.01401 0.14470 0.16625 0.00847 0.00815 0.01009

Median-bias

α = 0.1 0.00127 0.01266 0.01561 0.05474 0.06141 0.06142
α = 0.05 0.01026 0.01683 0.03613 0.05584 0.06792 0.04752
α = 0.01 0.01957 0.05064 0.06343 0.02915 0.02676 0.02703
α = 0.005 0.02058 0.05137 0.07142 0.02358 0.03363 0.02544
α = 0.001 0.02185 0.09419 0.12366 0.02003 0.02316 0.02217
α = 0.0001 0.00995 0.15933 0.18253 0.00213 0.00212 0.00020

RMSE

α = 0.1 0.15966 0.14768 0.14067 0.16790 0.17389 0.17482
α = 0.05 0.16460 0.13782 0.13709 0.17343 0.17451 0.17486
α = 0.01 0.16853 0.14213 0.13702 0.15941 0.15865 0.15640
α = 0.005 0.16584 0.13527 0.13566 0.16840 0.16627 0.16078
α = 0.001 0.17807 0.14354 0.15421 0.15181 0.15599 0.15628
α = 0.0001 0.19515 0.17119 0.18734 0.14400 0.14480 0.15229

Table 1: Properties of the estimator of ω for a sample size of 100
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Statistics CGMM iter-CEL iter-CET sv-CEL sv-CET CEEL

Mean-bias

α = 0.1 0.14000 0.02898 0.03098 0.04843 0.02750 0.02947
α = 0.05 0.12867 0.03820 0.01306 0.02096 0.02668 0.02518
α = 0.01 0.18330 0.01677 0.02680 0.03701 0.03237 0.03472
α = 0.005 0.19821 0.03615 0.02610 0.00630 0.01785 0.01742
α = 0.001 0.22838 0.04349 0.07008 0.00132 0.00548 0.00047
α = 0.0001 0.27198 0.02963 0.00750 0.02892 0.03156 0.00761

Median-bias

α = 0.1 0.06998 0.04613 0.04240 0.04521 0.03573 0.04324
α = 0.05 0.01829 0.03456 0.07287 0.04187 0.03385 0.02262
α = 0.01 0.08276 0.08898 0.07669 0.04032 0.01835 0.02850
α = 0.005 0.08022 0.08246 0.09298 0.00346 0.00385 0.00238
α = 0.001 0.14274 0.09316 0.05920 0.03139 0.02833 0.02550
α = 0.0001 0.21524 0.15297 0.18696 0.07053 0.07520 0.05335

RMSE

α = 0.1 0.54745 0.48857 0.48443 0.39627 0.36578 0.37339
α = 0.05 0.56286 0.48177 0.48472 0.38051 0.38536 0.37783
α = 0.01 0.57676 0.51385 0.52319 0.39518 0.38935 0.39701
α = 0.005 0.58441 0.52163 0.53106 0.38610 0.38887 0.39672
α = 0.001 0.57955 0.54570 0.56422 0.39252 0.40272 0.41305
α = 0.0001 0.56002 0.57135 0.55940 0.38983 0.38423 0.41655

Table 2: Properties of the estimator of β for a sample size of 100

Statistics CGMM iter-CEL iter-CET sv-CEL sv-CET CEEL

Mean-bias

α = 0.1 0.01207 0.01280 0.01102 0.01002 0.01365 0.01423
α = 0.05 0.01239 0.01187 0.01141 0.01371 0.01445 0.01142
α = 0.01 0.01061 0.01198 0.01003 0.00687 0.00949 0.00946
α = 0.005 0.00617 0.01277 0.01252 0.00945 0.01138 0.00893
α = 0.001 0.00620 0.00629 0.00545 0.00803 0.00584 0.00616
α = 0.0001 0.00250 0.00397 0.00584 0.00704 0.00686 0.00506

Median-bias

α = 0.1 0.01410 0.01344 0.01254 0.00928 0.01307 0.01260
α = 0.05 0.01419 0.01277 0.01267 0.01221 0.01477 0.01221
α = 0.01 0.01002 0.01119 0.01194 0.00685 0.01046 0.01046
α = 0.005 0.00668 0.01338 0.01240 0.00917 0.01227 0.00929
α = 0.001 0.00608 0.00678 0.00518 0.00916 0.00588 0.00610
α = 0.0001 0.00735 0.00589 0.00813 0.00713 0.00691 0.00710

RMSE

α = 0.1 0.05102 0.04821 0.04806 0.05432 0.05274 0.05499
α = 0.05 0.05293 0.04758 0.04857 0.05429 0.05434 0.05459
α = 0.01 0.05026 0.04727 0.04803 0.05186 0.05239 0.05215
α = 0.005 0.04927 0.04889 0.04825 0.05123 0.05080 0.05250
α = 0.001 0.05048 0.04695 0.04777 0.05022 0.05016 0.05008
α = 0.0001 0.13785 0.04977 0.04909 0.04868 0.04871 0.04955

Table 3: Properties of the estimator of γ for a sample size of 100
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Statistics CGMM iter-CEL iter-CET sv-CEL sv-CET CEEL

Mean-bias

α = 0.1 0.00037 0.00337 0.00359 0.00701 0.01638 0.01658
α = 0.05 0.00265 0.00067 0.00393 0.02034 0.01526 0.01499
α = 0.01 0.00108 0.00771 0.01653 0.00850 0.00123 0.00173
α = 0.005 0.00277 0.01275 0.02290 0.01874 0.01233 0.01401
α = 0.001 0.00692 0.02253 0.03106 0.01047 0.01361 0.01306
α = 0.0001 0.01282 0.03692 0.03869 0.01328 0.01363 0.00760

Median-bias

α = 0.1 0.01578 0.00196 0.00006 0.00128 0.00413 0.00468
α = 0.05 0.00959 0.00344 0.00860 0.00786 0.00019 0.00670
α = 0.01 0.01437 0.01001 0.01543 0.00345 0.00962 0.00938
α = 0.005 0.02217 0.01697 0.02435 0.00831 0.00227 0.00404
α = 0.001 0.02914 0.02270 0.03527 0.00654 0.00627 0.00613
α = 0.0001 0.02096 0.04269 0.04271 0.00943 0.01028 0.00112

RMSE

α = 0.1 0.12803 0.10768 0.10649 0.11880 0.14077 0.14123
α = 0.05 0.13424 0.10424 0.10373 0.13247 0.12813 0.12116
α = 0.01 0.13363 0.09945 0.09385 0.11651 0.11659 0.11627
α = 0.005 0.13073 0.09717 0.09963 0.12913 0.11941 0.14442
α = 0.001 0.15350 0.10349 0.09614 0.11262 0.14056 0.14065
α = 0.0001 0.12668 0.09667 0.09333 0.11083 0.11075 0.12064

Table 4: Properties of the estimator of δ for a sample size of 100

Mean-bias Median-bias RMSE SD
ω -0.05759 -0.01835 0.14810 0.13654
β -0.07979 0.10357 0.38982 0.38184
γ 0.01576 0.02135 0.04233 0.03932
δ -0.00047 0.00135 0.12413 0.12422

Table 5: Properties of the estimators using MLE for a sample size of 100
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Tests CGMM iter-CEL iter-CET sv-EL sv-ET CEEL
J-Test for α= 0.1 0.0010 0.0400 0.0300 0.0420 0.0580 0.0590
J-Test for α= 0.05 0.0030 0.0230 0.0300 0.0830 0.0760 0.0690
J-Test for α= 0.01 0.0260 0.0780 0.0680 0.1290 0.1170 0.1130
J-Test for α= 0.005 0.0360 0.0950 0.0840 0.1850 0.1840 0.1960
J-Test for α= 0.001 0.1420 0.1570 0.1530 0.3220 0.3360 0.3370
J-Test for α= 0.0001 0.5400 0.5820 0.5300 0.7820 0.7840 0.7830
LM-Test for α= 0.1 0.0040 0.0000 0.0040 0.0000 0.0010
LM-Test for α= 0.05 0.0040 0.0000 0.0100 0.0000 0.0000
LM-Test for α= 0.01 0.0530 0.0110 0.0610 0.0090 0.0020
LM-Test for α= 0.005 0.1290 0.0200 0.0800 0.0090 0.0120
LM-Test for α= 0.001 0.3660 0.0870 0.2560 0.0880 0.0710
LM-Test for α= 0.0001 0.5170 0.2150 0.4970 0.3040 0.3080

LR-Test for α= 0.1 0.0000 0.0000 0.0080 0.0080 0.0100
LR-Test for α= 0.05 0.0000 0.0000 0.0260 0.0180 0.0230
LR-Test for α= 0.01 0.0020 0.0030 0.1070 0.0890 0.0950
LR-Test for α= 0.005 0.0060 0.0010 0.1600 0.1490 0.1680
LR-Test for α= 0.001 0.0130 0.0070 0.4030 0.3580 0.3670
LR-Test for α= 0.0001 0.0410 0.0130 0.7260 0.6940 0.7180

J-Imhof for α= 0.1 0.0010 0.0400 0.0310 0.0420 0.0580 0.0590
J-Imhof for α= 0.05 0.0030 0.0240 0.0310 0.0830 0.0770 0.0730
J-Imhof for α= 0.01 0.0260 0.0790 0.0680 0.1320 0.1200 0.1160
J-Imhof for α= 0.005 0.0370 0.0980 0.0840 0.1870 0.1890 0.1980
J-Imhof for α= 0.001 0.1460 0.1610 0.1560 0.3280 0.3440 0.3450
J-Imhof for α= 0.0001 0.5430 0.5860 0.5380 0.7870 0.7890 0.7870

Table 6: Sizes of tests of overidentifying rectrictions (level=0.05,sample size=100)
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