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Chapter 1

Introduction to R

Contents

1.1 Getting help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Understanding the structure . . . . . . . . . . . . . . . . . . . . . . 7

1.3 Organizing our programs . . . . . . . . . . . . . . . . . . . . . . . 23

1.3.1 Classes and methods for second order polynomials . . . . . . . . . 30

1.4 Programming efficiently . . . . . . . . . . . . . . . . . . . . . . . 39

1.4.1 Loops versus matrix operations . . . . . . . . . . . . . . . . . . . . 39

1.4.2 Parallel programming . . . . . . . . . . . . . . . . . . . . . . . . . 45

1.1 Getting help

You can find R on the official web site http://www.r-project.org/. It is available for

Windows, Mac and Linux. As for any open source software, there are several manuals

on R that can be downloaded from the internet for free. On the web site (http://cran.r-

project.org/manuals.html), you will find detailed manuals for both users and develop-

ers. I recommend going through sections 1 to 9 of ”An Introduction to R”, which

will give you what you need to get started. The manual ”R Data Import/Export” is

a complete reference on how to deal with data from different sources (Stata, Matlab,

Excel, etc.). There are also manuals specialized in econometrics. I suggest download-

ing http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf. Finally,

there are several books published by Springer for any area of econometrics which are

not too expensive.

There are also tools integrated in R which are helpful when we are looking for a

particular function or when we want to know how to use it. Suppose we want to know

how to generate random numbers, but we don’t know the name of the function. We

can search using key words :

> help.search("Normal Distribution")

http://www.r-project.org/
http://cran.r-project.org/manuals.html
http://cran.r-project.org/manuals.html
http://cran.r-project.org/doc/contrib/Farnsworth-EconometricsInR.pdf
http://www.springer.com/series/6991?detailsPage=titles
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which gives a list of functions for which ”Normal Distribution” is in the description. For

example, one of the results is ”stats::Normal The Normal Distribution”, which means

that the function ”Normal” can be found in the package ”stats”. The latter is included

in R and therefore do not need to be added. However, the result ”mnormt::dmnorm

Multivariate normal distribution” refers to the function dmnorm() which belongs to the

package ”mvtnorm” of [Genz et al. 2011]. This is one of the many packages that can

be found on CRAN (see the list here: http://probability.ca/cran/web/packages/) and

which can be installed using:

> install.packages("mvtnorm")

Once we have found the function we are looking for, we use the help() function in order

to learn the syntax. For example, if we are interested by the above result ”Normal”, we

type:

> help("Normal")

Notice that R is case sensitive. If you type help(”normal”), you will get an error message.

There are four functions associated with the term ”Normal”. The help file starts with

the syntax of these functions:

dnorm(x, mean = 0, sd = 1, log = FALSE)

pnorm(q, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

qnorm(p, mean = 0, sd = 1, lower.tail = TRUE, log.p = FALSE)

rnorm(n, mean = 0, sd = 1)

Some arguments such as ”mean” have default values and others such as ”x” or ”q”

require a value. Here is some examples:

� The density of a N(0,1) evaluated at 0.5:

> dnorm(0.5)

[1] 0.3520653

� The logarithm of the density of a N(0,1) evaluated at 0.5:

> dnorm(0.5,log=TRUE)

[1] -1.043939

� The density of a N(5,10) evaluated at 2:

> dnorm(2,mean=5,sd=sqrt(10))

http://probability.ca/cran/web/packages/
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[1] 0.08044102

� 5 pseudo random numbers from a N(0,1) using the seed 123:

> set.seed(123)

> rnorm(5)

[1] -0.56047565 -0.23017749 1.55870831 0.07050839 0.12928774

There are no secret tricks to learn a computer language. You need to sit down and

work hard. The best way is to think about a numerical project and try to do it. And

remember that if you have a problem, someone must have gone through the same.

The answer is probably somewhere in a newsgroup. Internet search engines such as

Google are therefore endless sources of information. You can even participate and ask

a question. But remember that the persons who answer are usually very friendly and

work for free. Therefore, show them that you have made an effort before asking a

question otherwise you could get the answer rtfm (read the f... manual).

Exercise 1.1. Using the help() or help.search(), try to find a function that: (i) solves

the system Ax = b, (ii) estimates a linear model by OLS, (iii) gives you the number of

characters in a string such as ”hello” and (iv) computes the mean of each column of a

matrix.

1.2 The basic concepts

1.2.1 Understanding the structure

R is an object-oriented language. The only difference between an object-oriented lan-

guage and one which is not object-oriented is the organization of functions and elements.

For example, the following

> x <- 1

> print(x)

[1] 1

means that the new object ”x” receives all the attributes of the right-hand side. In that

case, the operators ”=” and ”<-” are identical. However, it is often suggested to always

use the latter when defining an object. The former is used when we set the options in

a function:

> y <- matrix(1,nrow=1, ncol = 1)

> print(y)

http://Google.ca
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[,1]

[1,] 1

To see the difference, the two-line code above can be written in one single line as:

> print(y <- matrix(1,nrow=1, ncol = 1))

[,1]

[1,] 1

It defines the object ”y” and then print it. In that case, the operator ”=” cannot be

used; try

> print(y = matrix(1,nrow=1, ncol = 1))

An object is defined by its attributes and classes. Objects of some classes don’t have any

attributes and some have many. For example, x and y, defined above, look identical.

But they are different objects. We can obtain the classes associated with an object by

using the function ”is()”:

> is(x)

[1] "numeric" "vector"

> is(y)

[1] "matrix" "array" "structure" "vector"

and the attributes with ”attributes()”:

> attributes(x)

NULL

> attributes(y)

$dim

[1] 1 1

The difference between these two objects is that x does not have the attribute ”dim”

which gives the dimension of an array. Therefore we could make x identical to y simply

by adding the attribute ”dim” to it as follows:

> attributes(x) <- list(dim=c(1,1))

> is(x)
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[1] "matrix" "array" "structure" "vector"

However, this is not the most efficient way to transform the object x. We would

obtain the same result with the command ”x <- as.matrix(x)”. It is very important to

understand the difference between vectors with and without the attribute ”dim”. The

usual matrix operations can be performed only if the objects have the attribute ”dim”.

If they don’t, the operations can produce unexpected results. To see that, let A be a

2× 2 matrix and x be a simple vector (without ”dim”) containing two elements.

> A <- matrix(c(1,2,3,4),2,2)

> A

[,1] [,2]

[1,] 1 3

[2,] 2 4

> x <- c(1,2)

> x

[1] 1 2

Additions of two matrices are allowed only if the dimensions coincide. Because x does

not have any dimension, the operation A + x is allowed. But we have to be careful

with how R treats such operations. In fact, a matrix of the same dimension as A is

constructed by repeating the vector x until the total number of elements is equal to

the number of elements of A. Therefore, the number of elements of A should be a

multiple of the number of elements of x. A warning message is printed otherwise (try

to experiment as much cases as possible to make sure you understand). The result is:

> A+x

[,1] [,2]

[1,] 2 4

[2,] 4 6

However, if x is a 2×1 matrix, R returns an error message (Here I use the function try()

which returns the result if the operation is allowed and an error message otherwise):

> x <- as.matrix(x)

> try(x+A)[1]

[1] "Error in x + A : non-conformable arrays\n"
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This way of treating operations may seem confusing at first, but it happens to be very

useful in some cases. Suppose you have a T×N matrix R of asset returns. Each column

represents a different time series of returns. You also have a time series of returns on

the three-month US treasury bill (Rf ) that you want to use as proxy for the risk-free

rate. To compute a time series of excess returns of each asset (Zit = Rit − Rft), you

can simply define the vector of risk-free rates as a simple vector and do

> Z<- R-Rf

There are also different kinds of vector. We can create a vector of messages:

> W <- c("hello!", "Bonjour!", "Ohayogozaimasu!")

> is(W)

[1] "character" "vector" "data.frameRowLabels"

[4] "SuperClassMethod"

It is a vector, which means that it is a collection of elements, but we don’t see the

class ”numeric”. Therefore, mathematical operations are not allowed on that kind of

objects. In C++, which is probably the most popular object-oriented language for

software developers, you can redefine the operator ”+” for vectors of characters. It

would, for example, construct a new vector by combining the characters of each vector.

The operator ”+” would react differently whether the vector is numeric or not. There

is no point of having such operators in R, but it shows how it works. Many functions

are built in such a way that they react differently depending on the type of objects.

We call them ”methods”. A method is a function that adapts itself to the class of the

object. An example of method is ”summary()”. We can see the type of objects that

this method deals with:

> methods(summary)

[1] summary.aov summary.aovlist summary.aspell*

[4] summary.connection summary.data.frame summary.Date

[7] summary.default summary.ecdf* summary.factor

[10] summary.glm summary.infl summary.lm

[13] summary.loess* summary.manova summary.matrix

[16] summary.mlm summary.nls* summary.packageStatus*

[19] summary.PDF_Dictionary* summary.PDF_Stream* summary.POSIXct

[22] summary.POSIXlt summary.ppr* summary.prcomp*

[25] summary.princomp* summary.srcfile summary.srcref

[28] summary.stepfun summary.stl* summary.table

[31] summary.tukeysmooth*

Non-visible functions are asterisked
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The class of the object appears after the dot. So, summary() will treat objects of class

”matrix ” differently from objects of class, say, ”data.frame”. Other classes not listed

are treated by ”summary.default”. For example, let X be a data.frame, than summary

produces:

> set.seed(123)

> X <- matrix(runif(24),4,3)

> X <- data.frame(Consumption=X[,1],Income= X[,2], Wealth=X[,3])

> summary(X)

Consumption Income Wealth

Min. :0.2876 Min. :0.04556 Min. :0.4533

1st Qu.:0.3786 1st Qu.:0.40747 1st Qu.:0.4558

Median :0.5986 Median :0.71026 Median :0.5040

Mean :0.5920 Mean :0.60164 Mean :0.6046

3rd Qu.:0.8120 3rd Qu.:0.90443 3rd Qu.:0.6528

Max. :0.8830 Max. :0.94047 Max. :0.9568

If we create an object of class ”lm” which is create by the OLS procedure ”lm()”, the

summary() method produces very different results:

> res <- lm(Income~Consumption,data=X)

> summary(res)

Call:

lm(formula = Income ~ Consumption, data = X)

Residuals:

1 2 3 4

0.1994 -0.4662 -0.1573 0.4241

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8728 0.6181 1.412 0.293

Consumption -0.4580 0.9621 -0.476 0.681

Residual standard error: 0.4805 on 2 degrees of freedom

Multiple R-squared: 0.1018, Adjusted R-squared: -0.3473

F-statistic: 0.2266 on 1 and 2 DF, p-value: 0.681

In fact, every function produces an object of some kind. Even summary() does:

> is(summary(X))
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[1] "table" "oldClass"

It is very useful because you can store all your results in different variables and save it

in a file. For Example, if we estimate two models and want to save the properties of

the data only, we would proceed this way:

> res1 <- lm(Income~Consumption,data=X)

> res2 <- lm(Wealth~Consumption,data=X)

> sum_stat <- summary(X)

> save(res1,res2,sum_stat,file="data/all_result.rda")

> rm(list=ls())

(the last line deletes all objects from the workspace) Then, you can reload later and

analyze the results:

> load("data/all_result.rda")

> anova(res1)

Analysis of Variance Table

Response: Income

Df Sum Sq Mean Sq F value Pr(>F)

Consumption 1 0.05232 0.052319 0.2266 0.681

Residuals 2 0.46167 0.230837

There are two categories of classes: S3 and S4. Functions that produce S3/class objects,

like lm(), are lists of elements. An element of a list can be extracted using $. You can

obtain the names of each element with the names(). For example, objects produced by

lm() contain the following elements:

> names(res1)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms" "model"

If there is no conflict with other elements, you can only use the first letters:

> res1$coefficients

(Intercept) Consumption

0.8727695 -0.4580178

> res1$coef
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(Intercept) Consumption

0.8727695 -0.4580178

> res1$co

(Intercept) Consumption

0.8727695 -0.4580178

For S4/class objects, the elements are called slots which may themself be S3/class

objects. The unit root test procedure adfTest() from the package ”fUnitRoots” of

[Wuertz et al. 2009] is an example of functions producing S4/class objects. Let us first

create it:

> x <- as.ts(rnorm(200))

> library(fUnitRoots)

> res <- adfTest(x,lags=2, type="ct")

The elements of S4/class objects can be extracted using @. We can obtain the names

of the slots as follows:

> slotNames(res)

[1] "call" "data" "test" "title" "description"

The slot ”test” is a list as we can see:

> res_test <- res@test

> names(res_test)

[1] "data.name" "statistic" "p.value" "parameter" "lm"

Some elements are just values, as for ”statistic” and ”p.value”:

> res_test$statistic

Dickey-Fuller

-7.904307

> res_test$p.value

0.01

Others are S3/class objects like ”lm” which contains the results of the OLS estimation:

> summary(res_test$lm)
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Call:

lm(formula = y.diff ~ y.lag.1 + 1 + tt + y.diff.lag)

Residuals:

Min 1Q Median 3Q Max

-2.25260 -0.65132 -0.08469 0.62403 2.96349

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0150866 0.1382080 -0.109 0.913

y.lag.1 -1.0628340 0.1344626 -7.904 2.05e-13 ***

tt 0.0001167 0.0011923 0.098 0.922

y.diff.lag1 -0.0097415 0.1055491 -0.092 0.927

y.diff.lag2 -0.0921900 0.0717865 -1.284 0.201

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9516 on 192 degrees of freedom

Multiple R-squared: 0.5451, Adjusted R-squared: 0.5356

F-statistic: 57.52 on 4 and 192 DF, p-value: < 2.2e-16

Don’t get scared with all this terminology. Once we get used to it, it really makes

things easier.

The following gives you all that you need to play with matrices and vectors. First,

we create the following matrix and vector:

A =

1 4 7

2 5 8

3 6 9

 , x = {5 , 6 , 7},

using the following code (# means comment. R does not execute what comes after)

> A <- matrix(1:9,3,3)

> x <- 5:7 # or c(5,6,7)

� Extracting elements from a matrix. I let you figure out what the following codes

mean:

> A[1,2]

[1] 4

> x[1]
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[1] 5

> A[1,]

[1] 1 4 7

> A[,3]

[1] 7 8 9

> diag(A)

[1] 1 5 9

> A[c(1,3),c(2,3)]

[,1] [,2]

[1,] 4 7

[2,] 6 9

� Ax (matrix multiplication): Notice that x does not need to be a column vector.

If it is a simple vector without dimension, R will do the only operation that is

allowed.

> A%*%x

[,1]

[1,] 78

[2,] 96

[3,] 114

� x′Ax: Again, we don’t need to transpose x because it is the only logical way to

do the operation with a simple vector. The following two ways are identical:

> t(x)%*%A%*%x

[,1]

[1,] 1764

> x%*%A%*%x

[,1]

[1,] 1764
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� Adding x to each column of A:

> A+x

[,1] [,2] [,3]

[1,] 6 9 12

[2,] 8 11 14

[3,] 10 13 16

� Adding x to each row of A: 2 ways: The sweep() function is useful but somehow

confusing. In the code bellow, the 2 means that we want the operation +xi to be

applied to each element of the second dimension of A, the column, for each row.

> t(t(A)+x)

[,1] [,2] [,3]

[1,] 6 10 14

[2,] 7 11 15

[3,] 8 12 16

> sweep(A,2,x,FUN="+")

[,1] [,2] [,3]

[1,] 6 10 14

[2,] 7 11 15

[3,] 8 12 16

� Subtracting the mean of each column:

> t(t(A)-colMeans(A))

> sweep(A,2,colMeans(A),FUN="-")

� Computing x′x

> crossprod(x)

[,1]

[1,] 110

> t(x)%*%x

[,1]

[1,] 110
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> x%*%x

[,1]

[1,] 110

� computing the outer product xx′: It must be done explicitly if the oprator %*%

is used. Doing x%*%x will not work as it computes the inner product. The outer

product operator is %o%. The following are identical:

> xx <- x%*%t(x)

> xx <- outer(x,x)

> xx <- x%o%x

> xx

[,1] [,2] [,3]

[1,] 25 30 35

[2,] 30 36 42

[3,] 35 42 49

� Element by element operation. The operators +,*,/ are element by element op-

erators. As mentioned above, if x is a vector without dimension and we run A∗x,

A + x or A/x, R constructs a matrix of the same dimension as A by stacking

the vector x until the number of elements are equal and then apply the operator

element by element. If we apply the operators on two matrices, they must have

the same dimension. If not, R with return an error message. The variable xx

computed above has the same dimensions and therefore can be used to run:

> A+xx

> A*xx

> A/xx

� Stacking two vector or matrices one beside the other (cbind for column-bind) or

one under the other (rbind for row-bind):

> xc <- cbind(x,x)

> xr <- rbind(x,x)

Notice that the columns of the new matrix in the first case and the rows in the

second case have names. It is a new attribute of the object that it automatically

added when cbind and rbind are used. The attribute is called dimnames. It is

a list which gives the name with as many element as the number of dimension.

Look at the difference between the two objects:
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> attributes(xc)

$dim

[1] 3 2

$dimnames

$dimnames[[1]]

NULL

$dimnames[[2]]

[1] "x" "x"

> attributes(xr)

$dim

[1] 2 3

$dimnames

$dimnames[[1]]

[1] "x" "x"

$dimnames[[2]]

NULL

xc has no row names and xr has no column names.

� Adding or modifying names: matrix or data.frame?. This has nothing to do with

matrix operation but since we just saw that rows and columns can have names,

it is a good place to start. First, why would we be interested in giving names to

rows and columns? In economics, each number we are playing with are associated

with something. For example, suppose the matrix B stores the information about

the consumption habits of individuals. Suppose we have three individuals and 2

goods. Here is one way to create it:

> B <- matrix(c(200,100,150,150,100,200),2,3)

> dimnames(B) <- list(c("Book","Beer"),c("John","James","Bill"))

> B

John James Bill

Book 200 150 100

Beer 100 150 200
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A data.frame is another class of objects that is used to store data. It has different

attributes than matrices which implies that some operators or methods may work

with matrices and not with data.frame and vice versa. Since data.frame objects

are also lists, we start by introducing that particular object. A list is a collection

of almost everything you can think of. Here is an example:

> Pierre = list(address = "UofW Waterloo",

+ Inventory=c("Computer", "Coffee Maker","Books"),

+ LuckyNumbers = c(2,5,6,733,44))

You can extract the element of a list with $ as seen above or with [[i]] for the

value of the ith element of the list or [1] for the element with the name:

> Pierre[1] # This is still a list

$address

[1] "UofW Waterloo"

> Pierre[[1]] # this if the object of the list

[1] "UofW Waterloo"

> Pierre$addr

[1] "UofW Waterloo"

You can add things to the list like:

> Pierre$Mydata <- B

> Pierre$Mydata

John James Bill

Book 200 150 100

Beer 100 150 200

A data.frame is more restrictive because it requires the elements to be vectors

with the same number of elements. In the following example, I generate data

randomly and store them in a data.frame object:

> set.seed(100)

> X1 <- rnorm(100,mean=200,sd=50)

> X2 <- rnorm(100,mean=500,sd=25)

> Data <- data.frame(Consumption=X1, Income=X2)

> is(Data)
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[1] "data.frame" "list" "oldClass" "vector"

The is() function shows the inheritance of the object. The ”list” means that we

can treat the object as a list. We can then extract the Income using Data$Income

or Data[[2]]. The is() also tells us that the data.frame can be treated as a vector.

We can then do operation on a data.frame. For example, we can rescale the Data

as follows:

> Data <- Data/100

However, we cannot do matrix operations because the inheritance does not include

”matrix”. If we want, we can transform a data.frame to a matrix:

> Data <- as.matrix(Data)

We can also change it back to a data.frame:

> Data <- as.data.frame(Data)

� Time series object: We can create a time series object with ts(). That object

has an attribute called tsp that gives information about the first and last dates

and the frequency of the data. For example, we can define the above Data as a

quarterly time series starting the first quarter of 1970:

> tsData <- ts(Data,start=c(1970,1),freq=4)

> is(tsData)

[1] "mts" "matrix" "ts" "array" "structure"

[6] "oldClass" "vector" "otherornull"

The ”mts” means multivariate time series. Is is no longer a data.frame. The

plot() function will react differently with matrix, data.frame or ts objects. With

ts objects, the plot knows that the x axis is time:

> plot(tsData)
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which is different from the case in which the object is a matrix:

> Data <- as.matrix(Data)

> plot(Data)
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� Higher dimensional arrays: It may sometimes be useful to store information in a

matrix with more than 2 dimensions. If we consider the matrix B above, we could

be interested to store the consumption habits of the individuals for two different

periods. Suppose B was the consumption in 1990 and B2, defined bellow is the

consumption in 2000. We can define a new matrix containing all the two matrices.

> B2 <- matrix(c(250,75,300,250,500,20),2,3)

> dimnames(B2) <- dimnames(B2)
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> allB <- array(0,c(2,3,2))

> allB[,,1] <- B

> allB[,,2] <- B2

> dimnames(allB)[[1]] <- dimnames(B)[[1]]

> dimnames(allB)[[2]] <- dimnames(B)[[2]]

> dimnames(allB)[[3]]<- c("1990","2000")

> allB

, , 1990

John James Bill

Book 200 150 100

Beer 100 150 200

, , 2000

John James Bill

Book 250 300 500

Beer 75 250 20

Exercise 1.2. In order to do the exercise, you will need to load the data file ”Pri-

ceIndex.rda”, in which you’ll find seven vectors of price index: all, Car, Clothing,

Electricity, Food, NatGas and Gasoline. All vectors are monthly time series going from

January 1949 to September 2011. This exercise makes you use what we have covered

above and more. You may need to use Google, help() or help.search(). That is where

the fun begins

1. Collect the data in a matrix of class ”ts” with the correct starting date and fre-

quency. You can then plot the data and compare the inflation of different items.

2. Build a table in which you have for each item, the average annual inflation, its

standard deviation, its kurtosis and its skewness.

3. Create a matrix of annual data from your monthly series. An annual index is

defined as the average monthly index.

4. Using the annual series, plot on the same graph the annual inflation series of

all component of CPI and include a legend. Do you see a difference between the

different items?

Exercise 1.3. In the next section, we will see how to organize our programs. It is

often a good practice to create our own objects with their associated methods. We will

learn how to use them later. For now, create the following objects:
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1. An object of class ”consumer”. We consider a world in which only two goods are

produced, x1 and x2, and the consumers have a Cobb-Douglas utility function.

The object must therefore inform us about the parameters of the utility function,

the income of the consumer, his name, address, occupation, and so on. Here is

an example of an object I created (notice that you need a print method for this

kind of object in order to obtain that result. We’ll cover that in the next section)

> print(cons1)

Pierre

#############

Address : U of Waterloo

Occupation : Professor

Income = 2000

Utility function : U(x1, x2) == 1 * X1^0.4 * X2^0.6

2. Create now an object of class ”producer”. The object will include the name of the

firm, what kind of good it produces, its location, the parameter of its production

function and so on. You can assume that the production function is a constant

elasticity of substitution (CES) function.

3. Create an object of class ”market”. In that object, we have all the information

about the goods produced, taxes, the kind of competition, and any other factor that

you consider to be important.

Usually, we do not create objects without knowing what we’ll be doing with them. For

example, we may want to have a method, choice(), that computes the optimal choice of

a consumer given that he lives in market ”mark1”. The method could look like:

> res <- choice(cons1, market1)

> print(res)

[1] "Pierre chooses to consume 1 unit if x1 and 5 units of x2"

This is the subject of next section. For now, you are free to create the objects the

way you like it. Use your imagination.

1.3 Organizing our programs

The main goal of object-oriented programming is mainly to be organized. It is not

essential to know how to do it, but it makes life much easier once you get to know how
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to do it. Just take for example the comment at the end of Exercise 1.3. For solving the

consumer problem, you could write a program like the following which I would consider

the least organized approach (keep in mind that many things I write here are a matter

of opinion or taste. If you don’t agree, speak up!):

> # We consider the consumer "cons1" created in the

> # previous section

> p1 <- 5

> p2 <- 10

> a1 <- .4

> a2 <- .6

> Y <- 2000

> x1 <- a1*Y/p1

> x2 <- a2*Y/p2

> print(x1)

[1] 160

> print(x2)

[1] 120

There are several problem with that approach. If you want to do it for another con-

sumer, you need to rewrite all the lines with different parameter values. Remember

that one way to minimize the risk of errors is to have a shorter programs. It is simple

arithmetics. Also, you need to know the solution of the utility maximization in order

to compute the solution. What if you have a totally new utility function?

I am going to the extreme here because I believe it is the best way to learn. Or

course, it is not always optimal to spend time being organized for everything we com-

pute. For example, if you only have to do it once for an assignment and you will never

solve another consumer problem in the future because you hate microeconomics, then

it is probably the best way to compute it. However, it is a good practice to be more or-

ganized especially when the complexity of the problem we are trying to solve increases.

I am presenting you my way of programming. It is not the only way. You are free to

choose your own way.

The first improvement would be to write a function that computes the solution

given the parameter values:

solveCobb <- function(name, a1, a2, Y, p1,

p2, print = TRUE) {

x1 <- a1 * Y/p1

x2 <- a2 * Y/p2
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if (print)

cat(name, " chooses to consume ", x1, " x1 and ",

x2, " x2\n")

choice <- list(x1 = x1, x2 = x2)

}

It can then be called for different consumers:

> solveCobb("Pierre", .4,.6,2000,p1,p2)

Pierre chooses to consume 160 x1 and 120 x2

> solveCobb("Luc", .4,.6,1000,p1,p2)

Luc chooses to consume 80 x1 and 60 x2

> solveCobb("Bill", .2,.8,1000,p1,p2)

Bill chooses to consume 40 x1 and 80 x2

Notice that I chose to build a function that prints the results (when the option print is

TRUE) in a nice way using the command cat(). It is not necessary. Also, the function

does not end with return(). In that case, you can recover the last object created as

follows:

> choice <- solveCobb("Pierre", .4,.6,2000,p1,p2,print=FALSE)

> print(choice)

$x1

[1] 160

$x2

[1] 120

It is often suggested to avoid using return() when it is possible (not everyone agrees

with that though). But it is not always possible. Also, you have to make sure when

you do not include return() at the end of the function that it returns what you want.

For example, the following function is a good illustration:

f <- function(x) {

ft <- x^2

class(ft) <- "A new Class"

pretty.print(f)

}
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$text.tidy

[1] "f <- function(x) {\n ft <- x^2\n class(ft) <- \"A new Class\"\n pretty.print(f)\n}"

$text.mask

[1] "f <- function(x) {\n ft <- x^2\n class(ft) <- \"A new Class\"\n pretty.print(f)\n}"

$begin.comment

[1] ".BeGiN_TiDy_IdEnTiFiEr_HaHaHa"

$end.comment

[1] ".HaHaHa_EnD_TiDy_IdEnTiFiEr"

So it returns the class of the object instead of the object itself. In that case, you

have to end the function with return(r). Another improvement would be to store the

information of a particular consumer in a variable (like in Exercise 1.3) and use that

variable as argument for solveCobb(). Let us first create the consumer:

> pierre <- list(a1=.4,a2=.6,Y=2000,name="Pierre")

> luc <- list(a1=.2,a2=.8,Y=1000,name="Luc")

Then, we have to adapt the function solveCobb():

solveCobb <- function(cons, p1, p2, print = TRUE) {

x1 <- cons$a1 * cons$Y/p1

x2 <- cons$a2 * cons$Y/p2

if (print)

cat(cons$name, " chooses to consume ", x1,

" x1 and ", x2, " x2\n")

choice <- list(x1 = x1, x2 = x2)

}

> solveCobb(pierre,p1,p2)

Pierre chooses to consume 160 x1 and 120 x2

> solveCobb(luc,p1,p2)

Luc chooses to consume 40 x1 and 80 x2

I am still not satisfied with the above. Creating the consumers using a list() used by

solveCobb may not work if we misspell the name of the variables or if we forget to

define one. In general, when you want to use an object inside a function which respects

a certain structure, it is better to have another function that creates that object. In C
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or C++, we call these kind of functions the constructors. I like things to be as general

as possible when I write programs so that it can easily be adapted to other realities.

Here is a consumer constructor that I propose:

consumer <- function(name = NULL, para,

Y, utility = c("Cobb", "Linear", "Leontief", "Subsistence")) {

utility <- match.arg(utility)

if (utility == "Subsistence") {

x01 = para[3]

x02 = para[4]

} else {

x01 = NULL

x02 = NULL

}

# Cobb = x1^a1*x2^a2, Linear = a1*x1 + a2*x2

# Leontief = min(a1*x2, a2*x2), Subsistence =

# (x1-x01)^a1(x2-x02)^a2

# para = c(a1, a2, x10, x20)

list(name = name, a1 = para[1], a2 = para[2], x01 = x01,

x02 = x02, Y = Y, utility = utility)

}

Notice that utility can take more than one values. The first line in the function is

to make sure that what we write is among the choices. It also allow us to use the

first letters when there is no ambiguity. For example, we can write utility=”C” or

utility=”Li”, but not utility=”L”. The first choice in the list is the default value. We

can then proceed as follows:

> pierre <- consumer("pierre",c(.4,.6),2000)

> solveCobb(pierre,p1,p1)

pierre chooses to consume 160 x1 and 240 x2

Exercise 1.4. Write three functions for the last three utility functions in the list of con-

sumer() that solves the consumer problem. You can call them solveLinear(), solveLeon-

tief() and solveSubsistence().

Exercise 1.5. Write a function that creates an object ”market” that includes the price

of the two goods and the taxe imposed on each one (t1 and t2). Then adapt the solve

functions so that they only take the market and consumer objects as arguments (ex.

solveCobb(cons1, market1, print=T))
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What is nice with this structure is that you can create other functions that can be

applied to the consumer object. For example, you can plot the Engel’s curve of a

particular consumer:

engelCobb <- function(cons, p1, p2) {

if (is.null(cons$name))

cons$name <- "anonymous"

Yr <- seq(0.5 * cons$Y, 1.5 * cons$Y, len = 50)

E1 <- Yr * cons$a1/p1

E2 <- Yr * cons$a2/p2

ylim <- range(c(E1, E2))

plot(Yr, E1, ylim = ylim, xlab = "Income", ylab = "Demand",

type = "l")

lines(Yr, E2, col = 2, lty = 2)

legend("topleft", c("Good 1", "Good 2"), col = 1:2,

lty = 1:2)

title(paste("Engel curves for ", cons$name))

}

Then we can easily plot the Engel curve for any consumer created with consumer():

> engelCobb(pierre,p1,p2)
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Exercise 1.6. Write the Engel function for the three other utility functions.

A last nice function we can add is the graphical representation of the solution:
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plotSolveCobb <- function(cons, p1, p2) {

choice <- solveCobb(cons, p1, p2, F)

xr <- seq(choice$x1 * 0.5, cons$Y/p1, len = 50)

U <- choice$x1^cons$a1 * choice$x2^cons$a2

indif <- (U * xr^(-cons$a1))^(1/cons$a2)

budg <- curve(cons$Y/p2 - p1 * x/p2, 0, cons$Y/p1,

xlab = expression(X[1]), ylab = expression(X[2]),

bty = "n")

points(choice$x1, choice$x2, pch = 21, bg = 2,

col = 2)

lines(xr, indif)

segments(choice$x1, choice$x2, -1, choice$x2, lty = 2,

lwd = 2)

segments(choice$x1, choice$x2, choice$x1, -1, lty = 2,

lwd = 2)

title("Optimal choice")

}

> plotSolveCobb(pierre,p1,p2)
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Exercise 1.7. Do it for the three other utility functions.

There is still a problem with the above structure. In order to solve the consumer

problem or to plot the Engel’s curve, we need to print the consumer’s characteristics so

that we use the right function. It would be nice if we could just write solve(pierre)
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plot(pierre) or Engel(pierre). We can either write a function with things like ”if

(cons$utility==”Cobb”) ... else if () ... else ...” or to use classes. I let the consumer

problem to you as an exercise at the end of the chapter. But before we’ll see how to

create objects, classes and methods using a very simple example.

1.3.1 Classes and methods for second order polynomials

Classes are a way of identifying the type of objects. We saw several classes in the previ-

ous sections such as ”ts”, ”vector”, ”numeric”. We also saw that methods such as plot()

react differently depending on the object. There is no magic here; just organization.

Suppose for example that we have an object x of class ”ts” and a simple vector y. The

reason why plot(x) and plot(y) produce different graphs is that different functions are

called. Because x is of class ts, plot(x) is in fact plot.ts(x). R looks for functions with

names ending by .ts when applied to objects of class ”ts”. It produces a time series plot

with the dates which are included inside the structure of x. Those dates exist because

x was created using the constructor ts() which always creates dates. The type of plot

is also automatically chosen to be ”l”. On the other hand, there is no specific plot()

method for regular vector. In that case, it is the function plot.default() that is called

for y. There are many plot() methods for all kind of objects. Imagine how messy it

would be to put everything inside one function plot() with a collection of ”if... else

if” everywhere. The function plot.default() works fine. So why should we modify it?

Every time we need to plot another object, we create a new function. That function

can then be tested and bugs can easily be removed.

This is what we are going to do in this section for a simple object: a second order

polynomial. A second order polynomial is defined by its 3 parameters: A, B and C:

f(x) = Ax2 +Bx+ C

We first write the constructor. It is like for the consumer constructor that we built

in the previous section. The only difference is that we want that object to belong to

a particular class that we will call ”Quadra”. This is simply done using the function

class():

Quadra <- function(a, b, c) {

if (a == 0)

stop("It is not a quadratique function;\n'a' must be different from zero")

obj <- list(a = a, b = b, c = c)

class(obj) <- "Quadra"

return(obj)

}

We can then create the polynomial f(x) = 2x2 − 4x+ 10 and print it.
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> P1 <- Quadra(2,-4,10)

> P1

$a

[1] 2

$b

[1] -4

$c

[1] 10

attr(,"class")

[1] "Quadra"

We can see that the output from the print() method is not very nice. But because there

is no print.Quadra() function, the print.default() is used. There is a print() method for

a large number of objects. For example, if you estimate a model by OLS using lm().

The object created is of class ”lm”. There is a lot of information inside that object

(residuals, fitted values, covariance matrix of the coefficients and so on) but we don’t

want print() to show everything. Therefore, print.lm() only prints the estimates and

few other things. Let us do the same for our new object:

print.Quadra <- function(obj) {

cat("\nSecond order polynomial\n\n")

cat("F(x) = Ax^2 + Bx + C\n")

cat("with: A=", obj$a, ", B=", obj$b, ", C=", obj$c,

"\n\n")

}

Then we can try it on the object we created before (notice that just writing P1 is the

same as writing print(P1)):

> P1

Second order polynomial

F(x) = Ax^2 + Bx + C

with: A= 2 , B= -4 , C= 10

Now that we are starting to understand the idea, lets create a bunch of other methods.

The next one finds the zeros of the polynomial which could be real or complex. The
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method I want to use is zeros(). However, that method does not exist in R like print().

Therefore we need to inform R of this new method (which could be use to find zeros

of any kind of function f(x) by other users ):

zeros <- function(object, ...) {

UseMethod("zeros")

}

The ”...” are required because the zeros() method applied to other type of objects may

required other arguments. We can now create our new method for the object of class

”Quadra”.

zeros.Quadra <- function(obj) {

det <- obj$b^2 - 4 * obj$a * obj$c

if (det > .Machine$double.eps) {

r1 <- (-obj$b - sqrt(det))/(2 * obj$a)

r2 <- (-obj$b + sqrt(det))/(2 * obj$a)

r <- cbind(r1, r2)

class(r) <- "zeros"

attr(r, "type") = "Real and distinct"

}

if (abs(det) <= .Machine$double.eps) {

r1 <- -obj$b/(2 * obj$a)

r <- cbind(r1, r1)

class(r) <- "zeros"

attr(r, "type") = "Real and identical"

}

if (det < -.Machine$double.eps) {

det <- sqrt(-det)/(2 * obj$a)

r1 <- -obj$b/(2 * obj$a) - det * (0+1i)

r2 <- -obj$b/(2 * obj$a) + det * (0+1i)

r <- cbind(r1, r2)

class(r) <- "zeros"

attr(r, "type") = "Complexe"

}

return(r)

}

We will discuss the content of the function in class. Notice that the function produces

objects of class ”zeros”. We can then create a print method for that class of objects.

print.zeros <- function(obj) {

n <- length(obj)
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cat("\nType of zeros: ", attr(obj, "type"), "\n\n")

for (i in 1:n) cat("Zero[", i, "] = ", obj[i],

"\n")

cat("\n")

}

We can then apply the method to the polynomial P1 and print it directly:

> zeros(P1)

Type of zeros: Complexe

Zero[ 1 ] = 1-2i

Zero[ 2 ] = 1+2i

Lets create another polynomial with real zeros:

> P2 <- Quadra(-4,2,10)

> zeros(P2)

Type of zeros: Real and distinct

Zero[ 1 ] = 1.850781

Zero[ 2 ] = -1.350781

The next method computes the stationary point (max or min). For that, I use the

existing method solve() and the object produced is of class ”solve.Quadra”. I then

create a print method for that new object.

solve.Quadra <- function(obj) {

x <- -obj$b/(2 * obj$a)

f <- obj$a * x^2 + obj$b * x + obj$c

if (obj$a > 0)

what <- "min" else what <- "max"

ans <- list(x = x, f = f, what = what)

class(ans) <- "solve.Quadra"

return(ans)

}

print.solve.Quadra <- function(obj) {

if (obj$what == "min")

mes <- "\nThe polynomial has a minimum at " else mes <- "\nThe polynomial has a maximum at "

cat(mes, "x = ", obj$x, "\n")

cat("At that point, f(x) = ", obj$f, "\n\n")

}
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Lets try them:

> solve(P1)

The polynomial has a minimum at x = 1

At that point, f(x) = 8

> solve(P2)

The polynomial has a maximum at x = 0.25

At that point, f(x) = 10.25

Notice that I did not use the generic function solve() as it should be. If you look at

help(solve), it says that it is a generic function for solving Ax = b and the inputs are A

and b. In the package numericalecon I created on RForge, I had to change the function

name to solveP() (for solve polynomial) because we are not allowed to use existing

generic functions with different inputs.

The following shows one nice thing we can do. We want to create a binary operator

that will allow us to add two polynomials. First we need to create the function:

addQuadra <- function(Q1, Q2) {

if (class(Q1) != "Quadra" | class(Q2) != "Quadra")

stop("This operator can only be applied to\nobjects of class Quadra")

a <- Q1$a + Q2$a

b <- Q1$b + Q2$b

c <- Q1$c + Q2$c

Quadra(a, b, c)

}

Then we create the binary operator:

> "%+%" <- function(Q1,Q2) addQuadra(Q1,Q2)

We can then create a third polynomial which is the sum of the first two:

> P3 <- P1%+%P2

> solve(P3)

The polynomial has a maximum at x = -0.5

At that point, f(x) = 20.5

> zeros(P3)
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Type of zeros: Real and distinct

Zero[ 1 ] = 2.701562

Zero[ 2 ] = -3.701562

I conclude this section with the following two methods. We’ll discuss them in class if

we have time.

plot.Quadra <- function(obj, from = NULL,

to = NULL) {

f <- function(x) obj$a * x^2 + obj$b * x + obj$c

res <- solve(obj)

if (is.null(from) | is.null(to)) {

from <- res$x - 4

to <- res$x + 4

}

if (res$what == "min") {

d <- max(f(to), f(from)) - res$f

mes <- paste("Min=(", round(res$x, 2), ", ",

round(res$f, 2), ")", sep = "")

}

if (res$what == "max") {

mes <- paste("Max=(", round(res$x, 2), ", ",

round(res$f, 2), ")", sep = "")

d <- res$f - min(f(to), f(from))

}

curve(f, from, to, xlab = "X", ylab = "f(X)")

if (obj$b > 0 & obj$c > 0)

title(substitute(f(X) == a * X^2 + b * X +

c, obj))

if (obj$b < 0 & obj$c > 0)

title(substitute(f(X) == a * X^2 - b2 * X +

c, c(obj, b2 = -obj$b)))

if (obj$b > 0 & obj$c < 0)

title(substitute(f(X) == a * X^2 + b * X -

c2, c(obj, c2 = -obj$c)))

if (obj$b == 0 & obj$c > 0)

title(substitute(f(X) == a * X^2 + c, obj))
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if (obj$b == 0 & obj$c < 0)

title(substitute(f(X) == a * X^2 - c2, c(obj,

c2 = -obj$c)))

if (obj$c == 0 & obj$b > 0)

title(substitute(f(X) == a * X^2 + b * x, obj))

if (obj$c == 0 & obj$b < 0)

title(substitute(f(X) == a * X^2 - b2 * x,

c(obj, b2 = -obj$b)))

points(res$x, res$f, col = 3, cex = 0.8, pch = 21,

bg = 3)

if (res$what == "min") {

text(res$x, res$f + 0.2 * d, mes)

arrows(res$x, res$f + 0.18 * d, res$x, res$f)

} else {

text(res$x, res$f - 0.2 * d, mes)

arrows(res$x, res$f - 0.18 * d, res$x, res$f)

}

z <- zeros(obj)

if (attr(z, "type") == "Real and distinct") {

points(z[1], 0, col = 2, cex = 0.8, pch = 21,

bg = 2)

points(z[2], 0, col = 2, cex = 0.8, pch = 21,

bg = 2)

r1 <- paste(round(min(z), 2))

r2 <- paste(round(max(z), 2))

if (res$what == "min") {

if (abs(res$f) > d/2)

d2 <- -d else d2 <- d

text(min(z), 0.25 * d2, r1)

text(max(z), 0.25 * d2, r2)

arrows(min(z), 0.23 * d2, min(z), 0)

arrows(max(z), 0.23 * d2, max(z), 0)

} else {

if (abs(res$f) > d/2)

d2 <- -d else d2 <- d

text(min(z), -0.25 * d2, r1)

text(max(z), -0.25 * d2, r2)

arrows(min(z), -0.23 * d2, min(z), 0)
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arrows(max(z), -0.23 * d2, max(z), 0)

}

}

if (attr(z, "type") != "Complexe" | attr(z, "type") ==

"Real and identical")

abline(h = 0)

}

summary.Quadra <- function(obj) {

print(obj)

print(zeros(obj))

print(solve(obj))

}

Let us test them:

> summary(P1)

Second order polynomial

F(x) = Ax^2 + Bx + C

with: A= 2 , B= -4 , C= 10

Type of zeros: Complexe

Zero[ 1 ] = 1-2i

Zero[ 2 ] = 1+2i

The polynomial has a minimum at x = 1

At that point, f(x) = 8

> plot(P3)
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Notice that the whole exercise that we just went through is meant to help you

understand how to program. Of course, unless you are building your own package that

will be used by other users, you don’t really need to create a print method for every

new object you create to make it look nice. However, when I program, I try as much as

I can to take advantage of this object-oriented structure. For example, when I create

a function to estimate a model, when it is possible, I try to keep the same structure

as ”lm” or ”gmm” objects so that I can use for example the summary method or plot

method that are already defined for these objects.

As another example, I presently work on a project in which I have to play with many

macroeconomic series from many countries. I was not satisfied with the existing objects

(”vector”, ”ts”, ”timeSeries”, ...), so I created a object of class ”macroData”. Each object

has an attribute ”Country”, ”trend”, ”Interest rate” (because we have many possibilities

for each), the plot method has many more options and the summary method returns

some important moments that we often use to evaluate the performance of different

models. All my estimation procedures are then based on that type of objects. When

I simulate data, I create an object of the same class but with the attribute ”country”

being equal to ”simulated”. When we plan to work on a project for some time, it makes

a lot of sense to use that approach.

Exercise 1.8. You work for the Bank of Canada you are asked to create programs that

will allow the economists to quickly simulate their models and, based on the results,

make decisions related to the monetary policy. Try to think about a good structure for

your set of programs. You can create new objects and methods. To make it clear, name

each object you create, describe their structure and explain what the associated methods

do.
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Exercise 1.9. In the last exercise of the chapter, you are ask to construct a pseudo

microeconomic package for solving the consumer problem. You will create a consumer

objects and solve(), print(), plot() and any other methods. You are free to build you

package the way you like it. The best package will be put on RForge so that it can be

improved by the members (us). We’ll talk about it in class.

1.4 Programming efficiently

In the last section, we have seen how to be organized. Being organized is important, but

we also need to write functions that do not take forever to compute our results. In this

section we will learn few tips to write efficient functions. The term ”efficiency” refers

to the computational speed. In many cases, it won’t make much difference whether

your function is efficient or not. Why should we worry if it takes 1 second instead of

.5 second? But if you learn immediately to be efficient for easy tasks, it will become

natural to do it when you will need to solve more computationally demanding problems.

1.4.1 Loops versus matrix operations

In this section, we consider loops because they are the main source of inefficiency among

new programers. To see that, we consider the following example. Suppose we want to

write a function that sums the elements of a matrix, A (we suppose that there exists

no such function in R). The first thing that comes to our mind is to write a loop that

sums each element one at the time. The following function assumes that the input A

is a matrix (not a vector):

mySum <- function(A) {

S <- 0

for (i in 1:ncol(A)) {

for (j in 1:nrow(A)) S <- S + A[i, j]

}

return(S)

}

The function system.time() reports how much time was required to execute a certain

task. Of course, the result depends on the computer. This document was produced on

a computer equipped with an Intel i7-2600 at 3.4GHz CPU with 8 MB’s of RAM. You

can only obtain similar results if you have a comparable machine. The elapsed time

also depends on other factors. In fact, depending on what other tasks are performed by

your computer, system.time() may produce different result. In order to have a precise

idea, we often execute the task several times and take the average. But we won’t do it

because we just want to have an approximated time.
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In order to measure the performance of our function, we first create a 3, 000×3, 000

matrix randomly:

> set.seed(555)

> A <- matrix(rnorm(3000^2),ncol=3000)

> T1 <- system.time(SA <- mySum(A))

> T1

user system elapsed

5.628 0.000 5.650

You will say that 6 seconds is not that bad if we consider that we are summing 9 million

numbers. But suppose you write a function in which you have to compute that sum

several times. Suppose also that you need to call the function several times. In that

case, that small 6 seconds can quickly become several minutes. A loop in R, or in any

high level language such as Matlab, STATA or Gauss, should be avoided in general. In

lower level languages like C or C++, loops are much more efficient. The R function

sum(), for example, is just a loop like the one we perform in our function mySum(),

but written in C. The reason why loops in C are more efficient than loops in R requires

to understand how computer works and is beyond the scope of this course. We can

compare the efficiency of sum() by applying it to the same matrix A:

> T2 <- system.time(SA2 <- sum(A))

> T2

user system elapsed

0.008 0.000 0.008

In our example, the sum() is about 706 times faster than mySum() and we can see that

they both produce the same answer:

> SA

[1] 3012.563

> SA2

[1] 3012.563

The first general rule is therefore to use R function when it is possible and avoid using

loops. Sometimes, it requires to do a little search on the Internet or using the R

help tools to find out which function performs what you want to do. For example,
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suppose you want to apply a moving average on a time series to remove high frequency

fluctuations. Suppose the moving average is the following:

Xt =
1

3
Yt−1 +

1

3
Yt +

1

3
Yt+1,

with X1 = Y1 and Xn = Yn. Here Xt is the smoothed version of the series Yt. At first,

we may think that using a loop is unavoidable. Here is how we would proceed with a

loop (notice that we loose two observations):

myMA <- function(y) {

n <- length(y)

x <- rep(0, n)

x[1] <- y[1]

x[n] <- x[n]

for (i in 2:(n - 1)) x[i] <- (y[(i - 1)] + y[i] +

y[(i + 1)])/3

x <- as.ts(x)

attr(x, "tsp") <- attr(y, "tsp")

return(x)

}

However, this can be done using the function kernapply(). This function requires us

to provide the weights, and the weights must be in an object of class ”tskernel”. The

latter can easily be created with the function kernel(). For our example, we create the

weights as follows:

> w <- kernel("daniell",m=1)

> w

Daniell(1)

coef[-1] = 0.3333

coef[ 0] = 0.3333

coef[ 1] = 0.3333

The following function produce the same result as myMA() but without using a loop:

myMA2 <- function(y) {

n <- length(y)

w <- kernel("daniell", m = 1)

x <- kernapply(y, w)

x <- as.ts(c(y[1], x, y[n]))

attr(x, "tsp") <- attr(y, "tsp")

return(x)

}
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We can compare the relative performance of the two function using a simulated AR(1):

> y <- arima.sim(n=3000,model=list(ar=.9))

> T1 <- system.time(myMA(y))

> T2 <- system.time(myMA2(y))

> T1

user system elapsed

0.08 0.00 0.08

> T2

user system elapsed

0.004 0.000 0.001

Therefore, myMA2() is about 80 times faster than myMA(). Again, you will say that

0.08 second is not that bad. But, suppose your function has to be called hundreds

of times. For example, some estimation procedures require the data to be smoothed

before computing the objective function that we need to minimize. In that case, the

optimizer calls the function several times to evaluate its value and to compute numerical

derivatives. Then, improving the efficiency of the function will make a difference.

In other cases, relying on matrix algebra may be the solution to avoid loops. How-

ever, it sometimes requires some thinking and good understanding of matrix algebra.

For example, we can show that the moving average of a series is just a matrix operation.

In fact, the above moving average can be written as X = AY , with

A =



1 0 0 0 0 0 0 0 0 0

1/3 1/3 1/3 0 0 0 0 0 0 0

0 1/3 1/3 1/3 0 0 0 0 0 0
...

...
...

...
...

...
...

...
...

...

0 0 0 0 0 0 1/3 1/3 1/3 0

0 0 0 0 0 0 0 1/3 1/3 1/3

0 0 0 0 0 0 0 0 0 1


Exercise 1.10. Construct the function that computes the moving average using the

matrix approach and compare its performance with myMA() and myMA2(). Verify

that they all produce the same result. The difficulty here is to find an efficient way to

compute the matrix A. You do not want to create it using a loop.

Exercise 1.11. Write a function that simulates an AR(1) process. And AR(1) process

is defined as:

xt = ρxt−1 + εt
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with, for the purpose of the simulation, x0 = 0. We suppose that εt ∼ N(0, 1). The

function must have as arguments the value of ρ, the sample size and the seed for gen-

erating εt. Call these arguments r, n and s respectively. The returned series must also

be of class ”ts”. Usually, we create more observations than what is necessary and we

drop the extra observations at the beginning of the series. It reduces the impact of the

initial value (here x0 = 0). Your function must produce (n + 100) observations and

return the last n.

a) Write the function using a loop.

b) Write the same function without loop (Hint: look at the function filter())

c) Compare the performance and verify that they both produce the same result (you

will have to set the same seed before calling the functions if you want to compare

the values).

In the moving average example using matrix form, we are required to create an

n×n matrix. This matrix needs to be stored in memory, which could be a problem on

certain computer if n is large and the size of the RAM is not big enough. When all the

RAM is used, the CPU starts using SWAP memory. The SWAP memory uses space

on your hard disk and is much slower than the RAM. When writing a function using

matrices, you have to be aware of that problem. In some cases, loops, which avoid

storing big matrices, may be more efficient. But this is less and and less of a problem

with the computers that we have.

Beside the memory problem, we have to be careful about the general rule of using

matrices instead of loops. You probably have noticed in Exercise 1.10 that the loop

was more efficient than the matrix version of the moving average function. So, what

is the problem? In fact, there are two big operations: the construction of A and the

multiplication Ay. Beside the construction of A, which is itself a long process, there

are too many useless operations that we perform. Each xt is the result of the sum of

n elements and each element is the product of 2 numbers. Therefore, there is a total

of 2n operations per xt or 2n2 operations for the whole vector. The problem is that

most elements are zeros. We only need to do 6 operations per xt. Counting the number

of operations is also important when choosing a good method. It does not mean that

we have to rely on loops. It only means that we have to find another vector/matrix

approach. In the following function, we use a vector approach without using an n× n
matrix:

myMA3 <- function(y) {

n <- length(y)

x <- (y[-c(n - 1, n)] + y[-c(1, n)] + y[-c(1, 2)])/3

x <- ts(c(y[1], x, y[n]))
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attr(x, "tsp") <- attr(y, "tsp")

return(x)

}

> system.time(myMA3(y))

user system elapsed

0.000 0.000 0.001

It is even faster then myMA2(). We therefore modify the general rule to

Suggested Rule 1. Avoid loops if possible and replace them with vector of matrix

operations that minimize the number of operations. Constructing big matrices should

also be avoided.

Before going to the next section, you have to be aware that there are also built-in

functions that are more efficient than others. For example, is you want to compute

A′B, there are to ways to it in R: using the binary operator ”%*%” with the transpose

function t() or the crossprod() function. We can compare their relative efficiency using

two 2000× 2000 matrices:

> A <- matrix(rnorm(4e6,2000,2000))

> B <- matrix(rnorm(4e6,2000,2000))

> T1 <- system.time(t(A)%*%B)

> T2 <- system.time(crossprod(A,B))

> T1

user system elapsed

0.044 0.000 0.037

> T2

user system elapsed

0.012 0.000 0.006

Therefore, crossprod() is 6 times faster. Of course, we cannot enumerate all possible

functions and discuss their relative efficiency. You can only learn that by experimenting

them by yourself. User lists is also a good source of information.

Exercise 1.12. Some covariance matrix are defined as

V = (G′WG)−1

where G is n×q and W is an n×n diagonal matrix with the ith diagonal element being

the squared residual ε2i .
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a) Construct a function that computes the above operation with the argument of the

function being the matrix G and the vector of residuals e. In your function,

compute V exactly as it is written above.

b) Do the same, but without constructing the n× n matrix W .

c) Compare the relative efficiency of the two functions. To do so, generate a n × q
matrix G and n× 1 vector e randomly, with n = 5000 and q = 20.

1.4.2 Parallel programming

In this section, we briefly discuss some methods to improve efficiency by taking advan-

tage of the fact that computers are now equipped with multiple core processors. For

example, the Intel i7-2600 processor allows to send jobs to 8 cores simultaneously. If

you are lucky enough to work on a computer equipped with a Tesla GPU 2075 (graph-

ical processor unit), you can send up to 448 jobs simultaneously to your processor. It

is like having 448 computers working simultaneously. Parallel programing is a way of

write your program so that jobs are sent in blocks. For example, if you have 8 cores,

and want to run a simulation of 1000 iterations, you can run a loop of size equal to

125. In each loop, you send a block of 8 jobs to the 8 cores. These jobs are then run

simultaneously. You can then increase the speed of the simulation substantially.

Lets consider the following simulation. You want to measure the mean and variance

of x̄, where xi ∼ N(3, 4). To do so, you generate 5000 samples of size equals to 500

and save each x̄ in a vector. We know that the true mean and variance should be 3

and 4/500=0.008 respectively. The following function will do the job:

simXbar <- function(n, iter) {

xbar <- vector()

for (i in 1:iter) {

x <- rnorm(n, mean = 3, sd = 2)

xbar[i] <- mean(x)

}

return(list(mu = mean(xbar), sigma = var(xbar)))

}

We can then run the simulation:

> T1 <- system.time(sim1 <- simXbar(500,5000))

> T1

user system elapsed

0.264 0.008 0.270
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> sim1

$mu

[1] 2.998812

$sigma

[1] 0.008070684

The result is not too far from the theoretical one. The simulation is also quite fast

because the task of computing the mean and variance is almost instantaneous. However,

we can still improve it by writing our function differently. Here we only consider the

parallel programing tool mclapply() from the package ”multicore” of [Urbanek 2011].

There exists other packages in R that work as well but they are similar. mclapply()

is the parallel version of lapply(). We will start by studying how lapply() works.

Specifically, the function is lapply(X,FUN,...), where X is a list or a vector and FUN

is a function. It runs FUN on each element of X and returns the values as a list. For

example, if we want to compute the mean of 5000 500 × 1 vectors of N(3, 4), we can

proceed as follows:

> x <- lapply(rep(500,5000),rnorm,mean=3,sd=2)

> xbar <- lapply(x,mean)

In order to compute the mean and the variance of xbar, we first need to convert it to

a vector because mean() does not work on lists. There are two ways to do it:

> xbarVec1 <- simplify2array(xbar)

> xbarVec2 <- unlist(xbar)

> cbind(mean(xbarVec1),var(xbarVec1))

[,1] [,2]

[1,] 3.002372 0.008128158

> cbind(mean(xbarVec2),var(xbarVec2))

[,1] [,2]

[1,] 3.002372 0.008128158

The first is preferred if each element are vectors or matrices. Another possibility would

have been to use sapply() to produce xbar:

> xbar <- sapply(x,mean)

> cbind(mean(xbar),var(xbar))
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[,1] [,2]

[1,] 3.002372 0.008128158

The function is like lapply() but it automatically runs simplify2array() after to convert

the list to a vector. However, we do not want to use it here because there is no multi-

core version of it. Any function of that type (lapply(), sapply(), vapply()) is just a

more compact way to do a loop. Everything is computed sequentially. We first rewrite

the simXbar() function using lapply() and measure its performance.

simXbar <- function(n, iter) {

x <- lapply(rep(n, iter), rnorm, mean = 3, sd = 2)

xbar <- lapply(x, mean)

xbar <- simplify2array(xbar)

return(list(mu = mean(xbar), sigma = var(xbar)))

}

> T2 <- system.time(sim2 <- simXbar(500,5000))

> T2

user system elapsed

0.224 0.000 0.226

> sim2

$mu

[1] 3.001334

$sigma

[1] 0.007891793

The first version of the function took 0.27 second, which is not significantly different

from the second version. It just confirms that lapply() is like a loop. mclapply() is

like lapply() but it sends jobs simultaneously to several cores. The function has many

options. The option mc.cores is the number of cores you want to send the jobs to. By

default, it is the maximum number of cores that you have. The options mc.set.seed

is a logical variable. If set to TRUE (the default) a different seed is used for each

job. That’s the value to choose if we want a different random vector x. In most of the

time, we can use mclapply() like lapply() without modifying the options. The following

function compute xbar using mclapply():

mcsimXbar <- function(n, iter) {

xbar <- mclapply(rep(n, iter), function(n) mean(rnorm(n,
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mean = 3, sd = 2)))

xbar <- simplify2array(xbar)

return(list(mu = mean(xbar), sigma = var(xbar)))

}

> library(multicore)

> T3 <- system.time(mcsim <-mcsimXbar(500,5000))

> T3

user system elapsed

0.340 0.092 0.100

> mcsim

$mu

[1] 3.001831

$sigma

[1] 0.007935995

Here we created a function inside the mclapply() that generates the vector x and

computes its mean. The mcsimXbar() is 2 times faster than the simXbar() that uses

lapply(). Of course, the relative efficiency will depend on your type of processor. Notice

also that the document is created with Sweave which builds the document and execute

the R codes simultaneously. The result is therefore different when the functions are

compared in R directly. In R directly, McsimXbar() is 4.5 times faster than simXbar()

(on a computer with an Intel i7-2600 processor running on Linux).

Exercise 1.13. Show that if you write the mcsimXbar() function as the simXbar(),

but with mclapply() instead of lapply(), you don’t observe the same improvement.

The previous exercise, shows that using mclapply() does not necessarily improve the

performance. Therefore, we may have to try different approaches before being satisfied.

Exercise 1.14. You want to simulate the following process:

Yi = 10 + 5Xi + εi

εi ∼ N(0, 4),

5000 times, where the sample size is 500 and Xi ∼ N(4, 4) and fixed in repeated samples.

In other words, you simulate Xi only once. At each iteration, you want to compute the

OLS estimate of the coefficients and report at the end the sample mean and covariance

matrix of the vector of estimates. Use the function lm() to obtain the OLS estimates.

1. Do it using a loop

2. Find a way to improve the efficiency of the simulation by using mclapply()
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This Chapter is only an introduction to floating-points arithmetic. The

goal is only to make you realize that most numbers that we use in our

numerical projects are only approximations. Our results are therefore sub-

ject to rounding errors that may accumulate if we are not careful. If

you want a complete and detailed presentation of floating-point numbers, see

[Goldberg 1991](http://neo.dmcs.p.lodz.pl/ak/IEEE754 article.pdf). As an example,

the number 0.1 cannot be represented exactly by computers. We will see why in next

section. We can verify that by the following small experiment:

> .1+.1+.1==.3

[1] FALSE

R tells us that 0.1+0.1+0.1 is not equal to 0.3. However, the difference is small as we

can see:

> (.1+.1+.1)-.3

[1] 5.551115e-17

However, when we have to deal with thousands of operations, the error may become

more substantial. In the next section, we explain briefly how a computer store numbers

and why it cannot represent exactly simple numbers such as 0.1.

2.1 What is a floating-point number

A floating-point number is a real number that can be represented exactly by a computer.

First, computers store information in binary format (0’s and 1’s). In order to have

http://neo.dmcs.p.lodz.pl/ak/IEEE754_article.pdf
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software that are portable from one computer or operating system to another, we need

a stable way or dealing with floating-point numbers. Different results obtain on different

computers is enough to make a program crash. The most common standard used in

computers is the IEEE 754 (Institute of Electrical and Electronics Engineers). It is

a binary standard which means that numbers are represented in base 2. One of the

reasons for using the base 2 is related to the tightness of the relative error that comes

from the approximation of real numbers by floating-point numbers. Unless we want

to build computers, we don’t need to know more about the advantage of using that

standard. In binary format, integers are exactly represented by computers:

1 = 1(20) =2 1

2 = 1(21) + 0(20) =2 10

3 = 1(21) + 1(20) =2 11

4 = 1(22) + 0(21) + 0(20) =2 100

... =2
...

N =

p∑
i=0

di(2
i) =2 dpdp−1 · · · d0

where =2 means ”equals in base 2” and di’s are either 0 or 1. Of course, the number of

bits restricts the number of integers that can be exactly represented. In general, a real

floating-point number, x, is represented as follows:

x = ±
[
d0 + d1(2

−1) + d2(2
−2) + · · ·+ dp−1(2

−(p−1))
]

2e,

or simply

x = ± [d0.d1d2 · · · dp−1]2 2e,

where []2 means that the inside of the brackets is expressed in base 2, p is called the

precision (or the number of digits) and e the exponent. The term d0.d1...dp−1 is called

the significant. For example:

4.5 = 22 + 2−1 = (1 + 2−3)22 = [1.001]2 × 22,

which implies that d0 = 1, d3 = 1 (or a significant equals to 1.001), e = 2 (or 10 in

base 2) and all other di are equal to zero. Of course there are more than one ways to

represent 4.5. Here is another one:

4.5 = (2−1 + 2−4)23,

which implies d1 = d4 = 1, e = 3 and all other di’s equal to zero. However, the

number is uniquely represented if we impose the normalization d0 = 1. Furthermore,
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the normalization saves us a bit because there is no need to store d0 since it is always

1. The bits are allocated between the storage of the exponent, the (p− 1) di’s and the

sign (e.g. 1 if + and 0 if -). The exponent is store as an unsigned integer, which implies

that the number of different exponents is (emax− emin). Therefore, the number of bits

required to store a floating-point number is approximately:

Bits = log2 (emax − emin) + (p− 1) + 1

In R the allocation is stored in the variable .Machine:

> print(p <- .Machine$double.digits)

[1] 53

> print(emax <- .Machine$double.max.exp)

[1] 1024

> print(emin <- .Machine$double.min.exp)

[1] -1022

> bits <- log(emax-emin,2)+(p-1)+1

> bits

[1] 63.99859

It gives 1 bit for the sign, 11 for the exponent and 52 for the significant. In fact,

R follows the IEEE-754 standard for double precision floating-point numbers. Other

important numbers are stored in .Machine. The first is the machine-epsilon (ε). It is

usually defined as β−p+1/2, where β is the base. It is the smallest positive floating-point

number, x, such that (1 + x) 6= 1:

> print(eps<-.Machine$double.eps)

[1] 2.220446e-16

> 1+eps==1

[1] FALSE

It is not the smallest number, which is rather equal to 2emin , but the highest relative

error that comes from approximating a real numbers by its nearest floating-point num-

ber. The accuracy of algorithms is often measured in terms of the machine-epsilon.
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A bad algorithms may produce errors of size nε with n >> 1. We therefore want to

choose algorithms that minimizes n. In the example we showed at the beginning of

the chapter, R returned FALSE to the question: 0.1 + 0.1 + 0.1 = 0.3? But, since

0.1 does not have an exact floating-point representation there is a rounding error that

accumulates when summing them. If we want to compare the numbers we need to take

into account these rounding errors. The function all.equal() compares numbers with a

certain level of tolerance. So, they don’t necessarily have to be exactly equal. If we go

back to are first example:

> .1+.1+.1==.3

[1] FALSE

> all.equal(.1+.1+.1,.3,tolerance=eps)

[1] TRUE

The interpretation of the above result is that (.1+.1+.1) 6= 0.3 only because of rounding

errors. The maximum and minimum floating-point numbers are:

> .Machine$double.xmax

[1] 1.797693e+308

> .Machine$double.xmin

[1] 2.225074e-308

Anything above the xmax is considered to be equal to infinity an anything below xmin

is considered to be equal to 0:

> .Machine$double.xmax*2

[1] Inf

We conclude this section by looking at another important ”number” that may appears

when performing some operations. The ”number” is NA or NaN, which means ”Not

a Number”. It will result from operations that produced indeterminate results. It is

not to be confused with operations that produce infinity. For example, 1/0 = ∞ but

0/0 = NA:

> 1/0

[1] Inf
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> 0/0

[1] NaN

Here are other examples:

> Inf-Inf

[1] NaN

> log(-2)

[1] NaN

> sqrt(-1)

[1] NaN

> Inf/Inf

[1] NaN

Of course, we cannot compare NA numbers. NA, as it is called, is not a number.

Therefore, we cannot use the logical operator ”==” to verify if an operation produces

an NA. In fact the result will also be an NA. There is a function in R that verify that:

> (0/0) == NA

[1] NA

> is.na(0/0)

[1] TRUE

However, we can use logical operators with infinity:

> (1/0)==Inf

[1] TRUE

> 1e400==Inf

[1] TRUE

> 1e200<Inf

[1] TRUE
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2.2 Rounding errors

This section briefly covers the issue of rounding errors created by numerical compu-

tations. Again, we cannot cover it in details. In fact, it may be quite complicated to

measure rounding errors from certain algorithms. But knowing how they are created

may help us developing good programming habits. It will also help justifying some

methods that will be presented in the next chapters.

In order to illustrate the problem related to rounding errors, consider the case of

floating-point numbers represented in base 10 with the number of digits p equals to 3

(remember that the number of digits after the point is equal to (p− 1)). In that case,

π is approximated by the floating-point number 3.14 × 100. Suppose the true value

is 3.1416. The term ”last place” refers to the last decimal given by the floating-point

representation (or 10−p+1). The error is 0.0016 = 0.16× 10−2 or 0.16ulps (units of the

last place). An error smaller than 1ulps means that the last digit is not contaminated.

Error from approximating a real number is always less than 1ulps. However, we often

get errors greater than 1ulps when results come from mathematical operations. As an

example, suppose the result of a computation is 3.12 × 100 and that the true answer

is 3.14 × 100. The error is then equal to 2ulps. In the IEEE standard, where p = 53,

the precision is up to about the 16th decimal (the 53th digit in base 2 refers to the 16th

digit in base 10).

The error measure in ulps is affected by multiplications. Consider the approximated

π above. Since it is represented by 3.14 × 100, if we multiply it by 2, the result

will become 6.28 × 100. The true value is 2π = 6.2832 which implies an error of

0.32ulps. Another measure of rounding error is the relative error defined as the error

divided by the true value and it is often expressed in term of the machine-epsilon. The

relative error for π is 0.0016/3.1416 = 0.0005 and the one for the computation of 2π

is 0.0032/6.2832 = 0.0005. It is therefore unaffected by the operation. The relative

error in terms of the machine-epsilon is [error/(TRUE ∗ ε)]ε. In our example, the

machine-epsilon is 10−2/2 = 0.005. The relative error for π or 2π is therefore 0.1ε.

There is a link between the error and the number of contaminated digits. If the

error is n ulps the number of contaminated digits is logβ n, if the relative error is nε

the number of contaminated digits is logβ n. Suppose we want to compute (x − y).

Suppose also that the base is 10, p=3 and the computer only keeps 2 decimal when

performing operations. In the first case, y = 2.15 × 1012 and x = 1, 25 × 10−5. The

computer rewrites the numbers using the same exponent and keep only 2 digits:

y − x = 2.15× 1012 − 0.00× 1012 = 2.15× 1012

The error is very small and no digits are contaminated. Consider the second case for

which y = 10.1 and x = 9.93. Using the same rule, we obtain:

y − x = 1.01× 101 − 0.99× 101 = 2.00× 10−1
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The error is 30ulps which implies a relative error of [0.03/(0.2 ∗ 0.005)]ε = 30ε.

log10 30 > 1 meaning that the two digits are contaminated. The error from the last

subtraction is called ”Catastrophic cancellation”, and it arises when x and y are very

close to each other. Of course, we would not have obtained the same error with double

precision floating-point numbers (p = 53 and β = 2). This example is meant to easily

show what happens when we subtract numbers of similar values. In reality, computers

are smarter than that. They usually have what we call ”Guard Digits” which are extra

digits used during floating-point operations. In our example, one Guard Digit would

have been enough to have no error. However, ”Catastrophic cancellation” exists even

in double precision systems. The error is small in absolute term but quite big if we

compare it with the error from other floating-point operations. To have an idea in

double precision computations, consider the following example:

> x <- 332.2234

> y <- 332.223395

> s <- x-y

> error <- s-0.000005

> error

[1] 4.421963e-14

The error is therefore approximately 442ulps (if we consider that p=53 corresponds to

the 16th decimals). However, what we just computed is not really the error coming from

(y − x). In fact, rounding errors is hard to measure with a computer because we are

not really subtracting the true solution (0.000005 does not have an exact floating-point

representation). Catastrophic cancellation occurs in fact when we subtract numbers

who are subject to rounding errors. In other words, numbers that come from floating-

point operations (ex. y2− x2). In that case, the rounding error is greater than the one

from approximating a real number. If the numbers are close, the subtraction eliminates

the good digits and we are left with the bad ones. Lets see what happens if y and x

are not close:

> x <- 2.57

> y <- 0.13

> s <- x-y

> error <- s-2.44

> error

[1] 0

We don’t really care in economics about an error at the 14th decimal. We don’t build

bridges. Therefore, we won’t worry when the number of floating-point operations is
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small. But, these small errors can become huge if the operations are repeated hundreds

or thousands of times. For example, when we work with big systems of matrices,

solving the system requires many sums, products, subtractions and divisions. If we

are not careful about how to minimize rounding errors, we may end up with a wrong

solution. Even if we do use some accurate algorithms, there exists iterative procedures

to reduce the rounding error further. We will cover that in the next section. Consider

only the operation to compute the OLS estimate:

β̂ = (X ′X)−1X ′Y

Suppose the sample size is 1000 and the number of coefficients is 10. Then, we need to

compute 1000 sums and multiplications for each of the 100 elements of (X ′X) and each

of the 10 elements of (X ′Y ). But, that’s not the end. We now have to invert (X ′X)

(we don’t really do that, as we’ll see in the next chapter) and multiply the inverse by

(X’Y). Fortunately, there exists a method that is less sensitive to rounding errors. We

don’t even have to compute X ′X. We’ll cover that in the next chapter.

The problem with floating-point arithmetic is that a method can be accurate most

of the time but very bad in some cases, when our variables take some particular values.

And because there is no error message that appears, we think that everything is fine.

The purpose of this chapter is only to make sure that you are aware of that. It will

also justify many numerical approaches that we will cover throughout the course.

We conclude this chapter with two examples. Suppose we want to compute the

sum of the element of a vector. If the elements of the vector come from floating-point

operations, the usual sum,
∑n

i=1 xi, could produce large rounding errors. It would

be even worse if some successive xi’s were close to each other in absolute value with

different signs, because we would face multiple catastrophic cancellations. The first

solution is to order the vector and to sum the element from the smallest to the largest.

Adding a small number to a large number may make us loose the last digits of the

small one. That’s why sorting may improve the accuracy of the sum. The second is to

use the following algorithm:

Exercise 2.1. Write the R function mySum(x) of the Algorithm 2.1. Create a

100, 000 × 1 vector with each element equals to 0.1. Compare the accuracy of your

function with the R function sum().

Algorithm 2.1 may seem to be an obscure way to improve accuracy. It is in fact

quite hard to come up with such algorithms. Another way to minimize rounding errors

is to minimize the number of operations when it is necessary. since it reduces the

accumulation of errors. In fact, it kills two birds with the same stone because it also

makes the algorithm faster. Suppose for example that we want to compute the following
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Algorithm 2.1 Kahan Summation Formula

S=X[1]

C=0

for i = 2→ n do

Y = X[i]− C
T = S + Y

C = (T − S)− Y
S = T

end for

Return S

polynomial (see [Judd 1998] page 34):

S =

n∑
i=0

aix
i

The direct approach requires n multiplications, n additions and (n−1) exponentiations

for a total of (3n− 1) operations. By rewriting the sum as (for n = 4):

S = a0 + x(a1 + x(a2 + x(a3 + xa4))),

we still have n additions and n multiplications but no exponentiation. The algorithm

is called the Horner’s method:

Algorithm 2.2 Horner Method

{A is (n+ 1)× 1 vector of ai}
{x is a scalar}
S = A[n+ 1]

for i = n→ 1 do

S = A[i] + S ∗ x
end for

Return S

Exercise 2.2. [Judd 1998] Exercise 8 of Chapter 2

a) Write a function to compute a nth order polynomial using the Horner’s method.

b) Modify the Horner’s method to compute:

S =
n∑
i=0

n∑
j=0

aijx
iyj
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c) Modify the Horner’s method to compute:

S =
n∑
i=0

n∑
j=0

n∑
l=0

aijlx
iyjzl
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3.1 Linear algebra

Suppose we want to compute the following problem:

Ax = y

The way we learn how to solve this system in basic textbooks is by inverting A and

multiplying y by the inverse. In other words, the solution is:

x = A−1y

This solution is right mathematically ans has a nice analytical form, but is not rec-

ommended numerically. Suppose you want to compute the inverse using textbook

definition. The number of operations to compute the determinant for an n× n matrix

is O(n!). We want to minimize the number of operations and also the number of catas-

trophic cancellations. The LU decomposition with pivoting is an algorithm developed

for that purpose. Pivoting is done to avoid unstable operations and LU decomposition

to reduce the number of operations. Consider the following case:

> A <- matrix(c(5,4,7,8,6,3,2,9,1),3,3)

> y <- c(2,4,6)

> A
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[,1] [,2] [,3]

[1,] 5 8 2

[2,] 4 6 9

[3,] 7 3 1

The package ”Matrix” includes many algorithms for matrices. Most of the functions

produce S4-class objects with information that can only be extracted using the appro-

priate method. Here is how we obtain L and U (Notice that is is A=PLU, not LU. P

is a pivoting matrix):

> library(Matrix)

> res <- lu(A)

> U <- expand(res)$U

> L <- expand(res)$L

> P <- expand(res)$P

> U

3 x 3 Matrix of class "dtrMatrix"

[,1] [,2] [,3]

[1,] 7.000000 3.000000 1.000000

[2,] . 5.857143 1.285714

[3,] . . 7.487805

> P

3 x 3 sparse Matrix of class "pMatrix"

[1,] . | .

[2,] . . |

[3,] | . .

> L

3 x 3 Matrix of class "dtrMatrix" (unitriangular)

[,1] [,2] [,3]

[1,] 1.0000000 . .

[2,] 0.7142857 1.0000000 .

[3,] 0.5714286 0.7317073 1.0000000

The matrix P tells us that the the first line of A is the second line of LU , the second

is the third and the third is the first as we can see:

> L%*%U
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3 x 3 Matrix of class "dgeMatrix"

[,1] [,2] [,3]

[1,] 7 3 1

[2,] 5 8 2

[3,] 4 6 9

> P%*%L%*%U

3 x 3 Matrix of class "dgeMatrix"

[,1] [,2] [,3]

[1,] 5 8 2

[2,] 4 6 9

[3,] 7 3 1

An algorithm to solve the linear model using LU is: (i) first solve Lz=y by recursive

substitution, (ii) then solve Ux=z also be recursive substitution. For an n× n matrix,

the LU decomposition requires n3/3 floating point operations. The 2 back-substitution

algorithms require O(n2) operations. For large n, solving a system using LU decom-

position is therefore of order n3/3 (n2 becomes negligible). We can estimate the order

of an algorithm. If we suppose that the time per operation is constant, the estimated

time of an algorithm applied to a system of dimension equals to n can be written as:

tn = Cnα,

where C is a constant (for the LU, α = 3). By applying the algorithm to different n,

we can estimate α using the following regression model:

log (tn) = α0 + α log (n) + εn

In the following, I estimate the α for the LU decomposition and Figure 3.1 shows that

the relationship is indeed linear.

> n <- c(500,1000,1500,2000,2500,3000)

> t <- vector()

> A <- list()

> for (i in 1:length(n))

+ A[[i]] <- matrix(rnorm(n[i]^2),n[i],n[i])

> for (i in 1:length(n))

+ t[i] <- system.time(lu(A[[i]]))[[3]]

> ln <- log(n)

> lt <- log(t)

> print(res<-lm(lt~ln))
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> plot(lt,ln,type="l",main="Computational time: LU decomposition",

+ xlab=expression(log(n)),ylab=expression(log(t[n])))
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)

Figure 3.1: Estimated relationship between the dimension of a matrix and its LU

decomposition

Call:

lm(formula = lt ~ ln)

Coefficients:

(Intercept) ln

-20.136 2.511

The estimated coefficient (α̂ = 2.51), is not so far from its true value 3. Errors come

from the small sample and the fact that time depends not only on oparations. Also,

computational time may not be constant across operations. But it gives us a good idea.

The constant term (α̂ =-20.14) is harder to interpret because it includes the time per

operation and the factor of proportionality.

Exercise 3.1. Suppose we want to solve Ax = b using the following method: (i) invert

A using solve(A), (ii) obtain the solution using x = A−1b. If we suppose that the

number of operation is of order O(nα), estimate α.
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When the matrix A is symmetric positive definite, there exist a more stable de-

composition for which the number of operations is of order n3/6 (half the number of

operations of the LU). It is the Cholesky decomposition. It is a special case of the LU.

The decomposition is A = LL′, where L is a lower triangular matrix. L′ is therefore

an upper triangular matrix like U . L is also called the square root of A. The function

chol() computes L′:

> A <- matrix(c(5,4,7,8,6,3,2,9,1),3,3)

> A <- crossprod(A)

> A

[,1] [,2] [,3]

[1,] 90 85 53

[2,] 85 109 73

[3,] 53 73 86

> chol(A)

[,1] [,2] [,3]

[1,] 9.486833 8.959787 5.586691

[2,] 0.000000 5.359312 4.281230

[3,] 0.000000 0.000000 6.038208

This decomposition is useful when we work with covariance matrices. If for example

the n× 1 vector x is ∼ N(µ,Σ), with Σ = LL′, x can be written as x = µ+Lz, where

z ∼ N(0, I). The generalized least square method (GLS) is based on the Cholesky

decomposition: If V ar(ε) = Σ in Y = Xβ + ε, GSL is defined as the OLS applied on

the following linear regression model:

[L−1Y ] = [L−1X]β + [L−1ε],

where again Σ = LL′.

The last decomposition is called the QR decomposition. It can be applied to any

matrix, even if it is not square. Let A be an n × k matrix. The decomposition is

A = QR, where Q is an n × k orthogonal matrix (Q′Q = I) and R is a k × k upper

triangular matrix. The rank of R is equal to the rank of A. If A is singular, there

will be zeros on the diagonal of R. The qr() function create an object of class ”qr”

from which Q and R can be extracted using qr.Q() and qr.R() respectively. Here is an

example:

> A <- matrix(1:6,3,2)

> resqr <- qr(A)

> qr.Q(resqr)
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[,1] [,2]

[1,] -0.2672612 0.8728716

[2,] -0.5345225 0.2182179

[3,] -0.8017837 -0.4364358

> qr.R(resqr)

[,1] [,2]

[1,] -3.741657 -8.552360

[2,] 0.000000 1.963961

There is a very useful result when it comes to compute the OLS estimate of Y = Xβ+ε.

We can show that all we need is to solve Y = Xβ using the QR decomposition. The

problem to solve is Y = QRβ, which implies Q′Y = Rβ. Since R is upper triangular,

we can easily solve the problem using back substitutions. The analytical solution is

β̂ = R−1Q′Y . We can easily show that it is the OLS estimator (X ′X)−1X ′Y , that the

projection matrix is Px = QQ′ and the residuals (I −QQ′)y.

Exercise 3.2. Write a function that computes the solution to Ux = b where U is upper

triangular. The function will be backSub(U,b). Make sure the function checks whether

U is triangular of not. The solution must be done using the back substitutions. Loops

may therefore be required in that case.

Exercise 3.3. Write the function myQrlm(Y,X), that returns the OLS estimators, the

standard errors, the t-test and the p-values all in the same matrix with the appropriate

names for the columns and the rows. You have to use the QR decomposition and the

function you wrote in the previous exercise. You are not allowed to compute X’X, X’Y

and to use the solve() function to compute inverses.

In a problem in which we need to solve f(x) = 0, we want to measure the stability of

the solution when the system is perturbed. In the linear system Ax = b, f(x) = Ax− b
and the solution is x = A−1b. If b is subject to the rounding errors r, the solution to

the perturbed system is x̃ = A−1b+A−1r. The condition number is defined as:

Cond =

‖x−x̃‖
‖x‖
‖r‖
‖b‖

=
‖A−1r‖
‖x‖

‖b‖
‖r‖

If we define the condition number of A as Cond(A) = ‖A‖‖A−1‖, the above condition

number is bound above by Cond(A) and bellow by 1/Cond(A). A condition number

of C implies that the solution is subject to an error of approximately C times larger

than the rounding error (in percentage). The condition number of a matrix can be

approximated by the ratio of its largest eigenvalue (λmax) to its smallest one (λmin).

In fact λmax is an upper bound for ‖A‖ and 1/λmin an upper bound for ‖A−1‖ Consider

the following OLS problem (here I use (X ′X)−1X ′Y to illustrate multicolinearity):
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> set.seed(123)

> x <- cbind(1,2,rnorm(40))

> x[20,2] <- 2.0001

> XX <- t(x)%*%x

> XY <- c(1,2,3)

> ev <- eigen(XX)$value

> condNum <- max(ev)/min(ev)

> condNum

[1] 103520161082

The condition number of X ′X is huge. We can see that the impact of a small variation

of X ′Y can have a large effect on β̂:

> solve(XX,XY)

[1] -490.19784894 245.10898537 0.09440253

> XY <- c(1,2.00001,3)

> solve(XX,XY)

[1] -2.559598e+03 1.279808e+03 9.610748e-02

The problem of multicolinearity is a problem with the stability of the linear system

(X ′X)β = (X ′Y ) caused by the near singularity of X ′X. There is a way of stabilizing

the solution. We can regularize the solution by adding a small positive number to the

diagonal of X ′X. In the OLS case, it is called ”Ridge Regression”. In a general problem

Ax = b, it is called a regularized technique. We can see the impact of adding .01 to the

diagonal of X ′X in our problem:

> XX2 <- XX+diag(3)*.01

> ev <- eigen(XX2)$value

> condNum2 <- max(ev)/min(ev)

> condNum2

[1] 20010.72

> XY <- c(1,2,3)

> solve(XX2,XY)

[1] 0.004055934 0.008348604 0.093968818

> XY <- c(1,2.00001,3)

> solve(XX2,XY)

[1] 0.003655954 0.008548644 0.093968813

The problem is of course to find the appropriate regularization parameter.
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3.2 Iterative method

In this section, we give an introduction to iterative methods. In this section, it is only

applied to the case of linear problems such as Ax = b. However, we will use similar

methods in next chapters for solving nonlinear system of equations and to do numerical

optimization. I only present here examples:

3.2.1 Stopping rules

Lets consider the computation of ex =
∑∞

n=0 x
n/n!. Obviously, we can not compute the

exact value. We need to stop somewhere. What criterion should we use to consider our

answer to be reasonably good? Table 3.1 gives us a measure of the error as a function

of n:

> x <- 1

> n <- c(0:8)

> myExp <- cumsum((x^n)/factorial(n))

> Exp <- exp(x)

> er <- abs(myExp-Exp)

> err <- er/Exp

> ans <- cbind(n,myExp,Exp,er,err)

> colnames(ans) <- c("n","My Exp", "True Exp","Abs Error","Rel Error")

> library(xtable)

> xtable(ans,caption="Iterative procedure to compute exp(1)",label="tab3-1",digits=5)

n My Exp True Exp Abs Error Rel Error

1 0.00000 1.00000 2.71828 1.71828 0.63212

2 1.00000 2.00000 2.71828 0.71828 0.26424

3 2.00000 2.50000 2.71828 0.21828 0.08030

4 3.00000 2.66667 2.71828 0.05162 0.01899

5 4.00000 2.70833 2.71828 0.00995 0.00366

6 5.00000 2.71667 2.71828 0.00162 0.00059

7 6.00000 2.71806 2.71828 0.00023 0.00008

8 7.00000 2.71825 2.71828 0.00003 0.00001

9 8.00000 2.71828 2.71828 0.00000 0.00000

Table 3.1: Iterative procedure to compute exp(1)

We can obtain the convergence rate by looking at the behavior of ‖xn+1−x‖/‖xn−x‖
(see Figure 3.2):
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> plot(n[-1],y,type="l",xlab="n",ylab="Conv. Ratio")
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Figure 3.2: The convergence ratio ‖xn+1 − x‖/‖xn − x‖ as a function of n

> n <- c(0:15)

> myExp <- cumsum((x^n)/factorial(n))

> y <- abs(myExp[-1]-Exp)/abs(myExp[-length(n)]-Exp)

A sequence converge linearly if:

lim
n→∞

‖xn+1 − x‖
‖xn − x‖

≤ β < 1

and superlinearly (or at a rate q > 1) if β = 0. A general rule can be obtained by

assuming that the above inequality is true which implies that:

‖xn+1 − xn‖ ≥ ‖xn − x‖(1− β)

Therefore, a rule that says: stops at xn+1 if ‖xn+1 − xn‖ < ε(1 − β) implies an error

bounded by ‖xn − x‖ < ε. For our case, it seems that the sequence to compute the

exponential is superlinear (the ratio converges to zero) which implies that we can use

the following function, which include the stopping rule. We can see that ε is just an

upper bound for the error:

myExp <- function(x, eps) {

y0 <- 1
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n <- 1

crit <- 1000

while (crit > eps) {

y <- y0 + (x^n)/factorial(n)

crit <- abs(y - y0)

n <- n + 1

y0 <- y

}

return(y)

}

> abs(myExp(2,1e-3)-exp(2))

[1] 6.138994e-05

> abs(myExp(2,1e-8)-exp(2))

[1] 4.142358e-10

> abs(myExp(2,1e-12)-exp(2))

[1] 4.618528e-14

Sometimes we also see rules based on the relative variation of the xn. This rule is:

stop at xn+1 if ‖xn+1 − xn‖/(1 + ‖xn‖) ≤ ε. The value in the denominator is to allow

convergence to zero. This rule however does not work well with sequences that converge

linearly. We can see that using the sequence xn =
∑n

i=1(1/i):

> N <- 100

> n <- 1:N

> x <- sum(1/n)

> xn <- cumsum(1/n[-N])

> y <- abs(xn[-1]-x)/abs(xn[-length(xn)]-x)

> beta <- max(y)

> beta

[1] 0.973315

In Figure 3.3 we can see that β as an upper bound around 1, which shows that

there is no convergence. Using the first rule we would never conclude that the sequence

converges.
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> plot(n[-c(N-1,N)],y,xlab="n",ylab="Conv. Ratio",type="l")
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Figure 3.3: The convergence ratio ‖xn+1 − x̂‖/‖xn − x̂‖ as a function of n for xn =∑
i(1/i)
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3.2.2 Fixed-Point Iteration

If we define G(x) = Ax − b + x, the solution to Ax = b is the fixed-point G(x) = x.

The following iteration, if it converges, will reach the solution:

xk+1 = G(xk) = (A+ I)xk − b

Lets try it:

FP <- function(A, b, x0, eps, maxit = 1000, beta = 0) {

crit <- 1000

n <- 1

while (crit > eps * (1 - beta)) {

x <- (A + diag(ncol(A))) %*% x0 - b

crit <- sqrt(crossprod(x - x0))

x0 <- c(x)

n <- n + 1

if (n >= maxit | any(abs(x) == Inf)) {

warning("No convergence")

break

}

}

return(x)

}

> A <- matrix(c(12,3,2,5,13,7,4,9,10),3,3)

> b <- c(4,5,6)

> trueX <- solve(A,b)

> FP(A,b,c(0,0,0),1e-6)

[,1]

[1,] -Inf

[2,] -Inf

[3,] -Inf

No luck! It does not converge. This method is quite bad because we have convergence

only if the modulus of the eigenvalues of (A+I) are less than 1. The following example

works.

> A <- matrix(c(-.2,.1,.1,.3,-.3,.3,.4,-.1,-.6),3,3)

> Tx <- solve(A,b)

> x <- FP(A,b,c(10,10,10),1e-5,maxit=5000)

> crossprod((Tx-x))^.5
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[,1]

[1,] 0.00101769

> x <- FP(A,b,c(10,10,10),1e-8,maxit=5000)

> crossprod((Tx-x))^.5

[,1]

[1,] 1.017961e-06

The error is however higher than ε when β = 0. The convergence is therefore linear.

We need a β close to 1 for the error to be bounded by ε:

> x <- FP(A,b,c(10,10,10),1e-5,maxit=5000,beta=.995)

> crossprod((Tx-x))^.5

[,1]

[1,] 5.08009e-06

> x <- FP(A,b,c(10,10,10),1e-8,maxit=5000,beta=.995)

> crossprod((Tx-x))^.5

[,1]

[1,] 5.078557e-09

3.2.3 Gauss-Jacobi and Gauss-Seidel

Here I reproduce Figure 3.2 of Judd. First I need to build few functions.

# Did I tell you I like small functions?

getXiGJ <- function(A, b, x) {

a <- diag(A)

diag(A) <- 0

x <- (b - A %*% x)/a

attr(x, "name") <- "Gauss-Jacobi"

return(x)

}

getXiGS <- function(A, b, x) {

xf <- rep(0, length(x))

a <- diag(A)

diag(A) <- 0

for (i in 1:length(x)) x[i] <- (b[i] - crossprod(A[i, ],



72 Chapter 3. Linear Equations and Iterative Methods

x))/a[i]

attr(x, "name") <- "Gauss-Seidel"

return(x)

}

# The function prepares A so that the diagonals are not zero

PrepA <- function(A, b) {

bad <- which(abs(diag(A)) <= 1e-07)

for (i in bad) {

l <- which(abs(A[, i]) > 1e-07)

if (length(l) == 0)

return(list(A = NULL, b = NULL, fail = TRUE))

A[i, ] <- A[i, ] + A[l[1], ]

b[i] <- b[i] + b[l[1]]

}

return(list(A = A, b = b, fail = FALSE))

}

# This function works for both algorithm

IterSolve <- function(A, b, x0, algo, eps = 1e-08,

maxit = 1000, ...) {

res <- PrepA(A, b)

if (res$fail)

stop("The algorithm failed") else {

A <- res$A

b <- res$b

}

crit <- 1000

AllX <- x0

n <- 1

while (crit > eps) {

x <- c(algo(A, b, x0, ...))

AllX <- rbind(AllX, x)

if (any(abs(x) == Inf))

stop("The algorithm diverges")

crit <- crossprod(x - x0)^0.5

if (n == maxit) {

warning("Maxit reached")

break
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}

n <- n + 1

x0 <- x

}

if (n < maxit)

cat("\n", attr(x, "name"), "\nConverged after ", (n -

1), "iterations\n")

return(list(x = x, AllX = AllX))

}

We can try it with the previous matrix

> IterSolve(A,b,c(0,0,0),eps=1e-5,algo=getXiGJ)$x

Converged after 399 iterations

[1] -959.9998 -239.9999 -289.9999

> IterSolve(A,b,c(0,0,0),eps=1e-5,algo=getXiGS)$x

Converged after 169 iterations

[1] -959.9999 -240.0000 -290.0000

The second method is clearly faster than the first method, which is explained by the

fact that it uses the new information as soon as it is available. The two methods are

also much faster than the Fixed-point method. They also seem to converge better since

they both can solve the first problem we tried above with the Fixed-Point algorithm.

To see it, we even try very bad starting values:

> A <- matrix(c(12,3,2,5,13,7,4,9,10),3,3)

> b <- c(4,5,6)

> IterSolve(A,b,c(100,-100,50),eps=1e-5,algo=getXiGJ)$x

Converged after 104 iterations

[1] 0.16021871 -0.08840049 0.62983159

> IterSolve(A,b,c(100,-100,50),eps=1e-5,algo=getXiGS)$x

Converged after 22 iterations

[1] 0.16022332 -0.08840292 0.62983738

But there are examples in which the algorithms do not converge:
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> set.seed(111)

> A <- matrix(rnorm(9),3,3)

> x1 <- try(IterSolve(A,b,c(100,-100,50),eps=1e-5,algo=getXiGS))

> cat(x1)

Error in IterSolve(A, b, c(100, -100, 50), eps = 1e-05, algo = getXiGS) :

The algorithm diverges

We’ll comeback to this convergence problem latter. We first want to see how we can

use the algorithm to analyze the dynamics of market going from any point to the

equilibrium. The model is:

p+ q = 10 (demand)

p− 2q = −2 (supply)

or (
1 1

1 −2

)(
p

q

)
=

(
10

−2

)
First lets compare the two methods:

> A <- matrix(c(1,1,1,-2),2,2)

> b <- c(10,-2)

> res1 <- IterSolve(A,b,c(4,1),eps=1e-5,algo=getXiGS)

Converged after 21 iterations

> res2 <- IterSolve(A,b,c(4,1),eps=1e-5,algo=getXiGJ)

Converged after 40 iterations

> ans <- cbind(1:20,res1$AllX[1:20,],res2$AllX[1:20,])

> colnames(ans) <- c("n","p-(GS)","q-(GS)","p-(GJ)","q-(GJ)")

Table 3.2 shows some iteration results. We can see that the Gauss-Seidel method is

faster. The function plotEqui() creates something similar to Figure 3.2 of Judd. The

result is shown in Figure 3.4. The Gauss-Seidel method is slightly different because we

solve for the price first while Judd does the opposite. Also, the path in the book shows

movements between iteration while here we only show the final points.

plotEqui <- function(resGS, resGJ, A, b, n, Title = NULL,

xlab = NULL, ylab = NULL) {

x <- resGS$AllX[1:n, ]

x2 <- resGJ$AllX[1:n, ]

xsol <- solve(A, b)
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n p-(GS) q-(GS) p-(GJ) q-(GJ)

1 1.0000 4.0000 1.0000 4.0000 1.0000

2 2.0000 9.0000 5.5000 9.0000 3.0000

3 3.0000 4.5000 3.2500 7.0000 5.5000

4 4.0000 6.7500 4.3750 4.5000 4.5000

5 5.0000 5.6250 3.8125 5.5000 3.2500

6 6.0000 6.1875 4.0938 6.7500 3.7500

7 7.0000 5.9062 3.9531 6.2500 4.3750

8 8.0000 6.0469 4.0234 5.6250 4.1250

9 10.0000 6.0117 4.0059 6.1875 3.9375

10 15.0000 5.9996 3.9998 6.0156 4.0234

11 20.0000 6.0000 4.0000 5.9941 4.0020

Table 3.2: The convergence of the algorithm of Gauss-Jacobi versus Gauss-Seidel for a

Demand-Supply example.

xlim <- c(0, 2 * xsol[2])

ylim <- c(0, 2 * xsol[1])

if (is.null(xlab))

xlab <- "Q"

if (is.null(ylab))

ylab <- "P"

curve((b[1] - A[1, 2] * x)/A[1, 1], 0, xlim[2], xlim = xlim,

ylim = ylim, xlab = xlab, ylab = ylab, bty = "n")

abline(b[2]/A[2, 1], -A[2, 2]/A[2, 1])

if (is.null(Title))

title("Dynamics of Demand and Supply Equilibrium") else title(Title)

for (i in 1:(n - 1)) {

text(x[i, 2], x[i, 1], i, col = 2, lwd = 4)

arrows(x[i, 2], x[i, 1], x[(i + 1), 2], x[(i + 1), 1],

col = 2)

}

text(x[n, 2], x[n, 1], n, col = 2, lwd = 4)

for (i in 1:(n - 1)) {

text(x2[i, 2], x2[i, 1], i, col = 4, lwd = 4)

arrows(x2[i, 2], x2[i, 1], x2[(i + 1), 2], x2[(i + 1),

1], lty = 2, col = 4)

}
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> plotEqui(res1,res2,A,b,6)
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Figure 3.4: Dynamics of the market using two types of iterative methods

text(x2[n, 2], x2[n, 1], n, col = 4, lwd = 4)

legend("top", c("Gauss-Seidel", "Gauss-Jacobi"), lty = c(1,

1), col = c(2, 4))

}

Using the dynamics of the model, we can see why in some cases, the iterative pro-

cedure does not converge. It is a nice example that uses the same argument as when

we analyze movements in differential equation models graphically. The method con-

verges because of the angle between the demand and the supply around the equilibrium.

Figure 3.5 shows what happens if the slope of the demand becomes -2.1:

> A <- matrix(c(1,1,2.1,-2),2,2)

> b <- c(10,-2)

> res1 <- IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGS)

> res2 <- IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGJ)

We would get a perpetual cycle if the ratio was 1 in absolute value (try it). Here

we are just solving a linear system. The non-convergence of the iterative methods does

not imply tt we do not have a solution:

> solve(A,b)
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> plotEqui(res1,res2,A,b,7)
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Figure 3.5: Dynamics of the market using two types of iterative methods

[1] 3.853659 2.926829

The problem comes from the algorithm not the system itself. However, if we had a

dynamic system, the system would be considered unstable. We’ll cover that later.

There is a general rule for the convergence of both algorithms. If A is diagonally

dominant (|aii| >
∑

j 6=i |aij |) , the method works. We can construct diagonally domi-

nant matrices from one that is not diagonally dominant. For example, if the first row

of A is replaced by the sum of the first and the second we get (we have to do the same

transformation to b):

> A[1,] <- A[1,]+A[2,]

> b[1] <- b[1]+b[2]

> A

[,1] [,2]

[1,] 2 0.1

[2,] 1 -2.0

The matrix becomes diagonally dominant. The system can therefore be solved:

> IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGS)$x
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Converged after 5 iterations

[1] 3.853659 2.926829

> IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGJ)$x

Converged after 9 iterations

[1] 3.853659 2.926829

Of course it make no sense economically to replace the demand by the sum of the

demand and the supply. It is just a numerical trick to make the algorithm works.

Exercise 3.4. Rewrite the function PrepA() so that (if possible) all rows of A becomes

diagonally dominant.

3.2.4 Acceleration and Stabilization Methods

We first rewrite the function getXiGJ() and getXiGS() to include the parameter ω of

the altered iterative scheme, with default value of 1.

getXiGJ <- function(A, b, x, omega = 1) {

a <- diag(A)

diag(A) <- 0

x <- omega * (b - A %*% x)/a + (1 - omega) * x

attr(x, "name") <- "Gauss-Jacobi"

return(x)

}

getXiGS <- function(A, b, x, omega = 1) {

xf <- rep(0, length(x))

a <- diag(A)

diag(A) <- 0

for (i in 1:length(x)) x[i] <- omega * (b[i] - crossprod(A[i,

], x))/a[i] + (1 - omega) * x[i]

attr(x, "name") <- "Gauss-Seidel"

return(x)

}

Lets try to solve our previous unstable system using this modified iterative scheme:

> A <- matrix(c(1,1,2.1,-2),2,2)

> b <- c(10,-2)

> resGS <- IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGS,omega=.7)
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> plotEqui(resGS,resGJ,A,b,7)
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Figure 3.6: Gauss-Seidel and Gauss-Jacobi using an altered scheme

Converged after 12 iterations

> resGJ <- IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGJ,omega=.7)

Converged after 49 iterations

Figure 3.6 shows what happens. The problem was that the steps were to large. By

reducing them, we obtain convergence. In the case of a slow convergence, we can

also use ω to accelerate convergence. The following system is an example in which

convergence is very slow:

p = −1.95q + 10

q = 2q − 2

Figure 3.7 shows the convergence when ω = 1 and Figure 3.8 shows what happens if

we set ω to 0.6.
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> A <- matrix(c(1,1,1.95,-2),2,2)

> resGS <- IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGS)

Converged after 504 iterations

> resGJ <- IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGJ)

Converged after 955 iterations

> plotEqui(resGS,resGJ,A,b,27)
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Figure 3.7: Gauss-Seidel and Gauss-Jacobi using an altered scheme (Slow convergence

with ω = 1
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> A <- matrix(c(1,1,1.95,-2),2,2)

> resGS <- IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGS,omega=0.6)

Converged after 14 iterations

> resGJ <- IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGJ,omega=0.6)

Converged after 36 iterations

> plotEqui(resGS,resGJ,A,b,7)
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Figure 3.8: Gauss-Seidel and Gauss-Jacobi using an altered scheme (Slow convergence

with ω = 0.6
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For Gauss-Seidel, we can obtain an optimal ω. If we write the iteration in matrix

form, we have:

xk+1 = M−1ω Nωxk + ωM−1ω b

where Mω = (D + ωL), Mω = (1 − ω)D − ωU , and U , L, and D are respectively the

element above the diagonal, the element below the diagonal and the diagonal of A. In

fact, we have A = U + L + D. The iterative scheme converges quickly if the largest

eigenvalues of (M−1ω Nω) in absolute value is small and less than 1. We therefore what

the value of ω that minimizes the largest eigenvalues. The following function selects

the optimal ω using a grid search. It is not efficient but it works:

getOmega <- function(A, from = 0.1, to = 1) {

w <- seq(to, from, len = 100)

ev <- vector()

D <- diag(diag(A))

U <- A * upper.tri(A)

L <- A * lower.tri(A)

for (i in 1:length(w)) {

M <- D + w[i] * L

N <- (1 - w[i]) * D - w[i] * U

ev[i] <- max(abs(eigen(solve(M, N))$val))

}

w[which.min(ev)]

}

We can verify with the last to systems:

> A <- matrix(c(1,1,2.1,-2),2,2)

> b <- c(10,-2)

> w <- getOmega(A,0,3)

> res1 <- IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGS,omega=w)

Converged after 9 iterations

> A <- matrix(c(1,1,1.95,-2),2,2)

> w <- getOmega(A,0,3)

> resGS <- IterSolve(A,b,c(2.2,3.8),eps=1e-5,algo=getXiGS,omega=w)

Converged after 10 iterations

It is in fact very fast with the optimal ω.

Exercise 3.5. Try to find the optimal ω for the Gauss-Jacobi method and write a

function like the one above to compute it. Compare the convergence of Gauss-Seidel

and Gauss-Jacobi using their optimal ω.
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Exercise 3.6. Do the same for the fixed point algorithm.

We conclude this chapter with an example of Nash equilibrium computation. The

two reaction functions are:

p1 = 1 + 0.75p2

p2 = 2 + 0.8p1

In the following, we compare the convergence with different ω (find the optimal one),

and Figure 3.9 shows the case ω = 1.

> A <- matrix(c(1,-.8,-.75,1),2,2)

> b <- c(1,2)

> resGS <- IterSolve(A,b,c(2,1),eps=1e-5,algo=getXiGS)

Converged after 27 iterations

> resGJ <- IterSolve(A,b,c(2,1),eps=1e-5,algo=getXiGJ)

Converged after 50 iterations

> resGS2 <- IterSolve(A,b,c(2,1),eps=1e-5,algo=getXiGS,omega=.5)

Converged after 78 iterations

> resGJ2 <- IterSolve(A,b,c(2,1),eps=1e-5,algo=getXiGJ,omega=.5)

Converged after 96 iterations

In this example, reducing the value of ω does not help. Figure 3.10 shows us why. In

fact, we can accelerate the convergence by choosing a value greater than 1.

> resGS3 <- IterSolve(A,b,c(2,1),eps=1e-5,algo=getXiGS,omega=1.3)

Converged after 13 iterations

> resGJ3 <- IterSolve(A,b,c(2,1),eps=1e-5,algo=getXiGJ,omega=1.3)

It works for the Gauss-Seidel but not for the Gauss-Jacobi, which shows that the

optimal ω is not the same for the two algorithms. You can use the answer of Exercise

3.5 to show it.

Exercise 3.7. Answer questions 3, 6, 7 and 8 in Judd
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> plotEqui(resGS,resGJ,A,b,8,Title="Nash Equilibrium",xlab="P2",ylab="P1")
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Figure 3.9: Gauss-Seidel and Gauss-Jacobi for the computation of a Nash equilibrium

(ω = 1)

> plotEqui(resGS2,resGJ2,A,b,8,Title="Nash Equilibrium",xlab="P2",ylab="P1")
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Figure 3.10: Gauss-Seidel and Gauss-Jacobi for the computation of a Nash equilibrium

(ω = 0.5)
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4.1 One-dimensional problems

4.1.1 Derivative Free Methods

Suppose we want to find a local minimum of the following function, for which the shape

is shown on Figure 4.1:

f(x) = sin (x− 0.04x2)− sin (x)

4

The easier way to find the solution is by the Bracketing method. We first need to

find three points, A, B and C, such that f(A) > f(B) and f(C) > f(B) as in Figure

4.1. The following function computes the solution using the Algorithm 4.1 of Judd (I

also create a print method. Why not keeping our good habits):
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Figure 4.1: f(x) = sin (x− 0.04x2)− sin (x)
4

Brack <- function(f, a, b, c, eps = 1e-08, maxit = 1000) {

if (f(a) <= f(b) | f(c) <= f(b))

stop("You must have f(a), f(c) > f(b)")

if (!(b < c) | !(b > a))

stop("You must have a<b<c")

crit = 1000

n <- 1

x <- c(a, b, c)

mess <- NULL

conv <- T

id <- 0

fb <- f(b)

while (TRUE) {

d <- ifelse((b - a) < (c - b), (c + b)/2, (b + a)/2)

fd <- f(d)

if (d < b & fd > fb) {

a <- d

} else if (d < b & fd < fb) {

c <- b

b <- d
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fb <- f(b)

} else if (d > b & fd < fb) {

a <- b

b <- d

fb <- f(b)

} else {

c <- d

}

crit <- c - a

x <- rbind(x, c(a, b, c))

if (n >= maxit) {

mess <- paste("maxit(", maxit, ") reached", sep = "")

conv = F

break

}

n <- n + 1

if (crit < eps * abs(b))

break

}

n <- nrow(x)

ans <- list(obj = f(b), x = x, sol = b, name = "Bracketing Method",

conv = conv, prec = (x[n, 3] - x[n, 1]), mess = mess)

class(ans) <- "NonlinSol"

return(ans)

}

print.NonlinSol <- function(obj) {

n <- nrow(obj$x)

cat("\nMethod: ", obj$name, "\n")

if (obj$conv)

cat("Message: Converged after ", (n - 1), " iterations",

obj$mess, "\n\n") else cat("Message: ", obj$mess, "\n\n")

if (length(obj$sol) == 1)

cat("The solution is: ", obj$sol, ", and f(x) is ", obj$obj,

"\n") else {

cat("The solution is: \n")

if (is.null(names(obj$sol)))

names(obj$sol) <- paste("x", 1:length(obj$sol), sep = "")

for (i in 1:length(obj$sol)) cat(names(obj$sol)[i], " = ",

obj$sol[i], "\n")

cat("\nf(x) is ", obj$obj, "\n")
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}

cat("Precision: ", obj$prec, "\n")

}

Before we solve the problem, we have to ask ourselves: how should we pick the ε? We

know that the solution is between a and c. Therefore, should we make it as small as

possible? This is a very good application of floating-point arithmetic that we covered

in Chapter 2. Suppose that the true solution is b (see [Press et al. 2007], Chapter 10).

Then, a Taylor approximation implies (remember that the first derivative is zero at

that point):

f(x) ≈ f(b) +
1

2
f ′′(b)(x− b)2 = f(b)

(
1 +

f ′′(b)(x− b)2

2f(b)

)
The last term will be numerically equal to f(b) whenever:

f ′′(b)(x− b)2

2|f(b)|
< εm,

where εm is the machine epsilon. Remember that by definition (1+εm) = 1 numerically.

It implie that:

|x− b| <
√
εm

√
2|f(b)|
f ′′(b)

=
√
εm|b|

√
2|f(b)|
b2f ′′(b)

=
√
εm|b|O(1)

The moral is that there is no point of making the interval [a, c] smaller than
√
εm|b|

because we would not see any difference in terms of function values. For example, if

the middle point is 1, then setting the tolerance level to 10−8 is the best we can do.

With the three points shown in Figure 4.1, the solution is:

> f <- function(x) sin(x-.04*x^2)-sin(x)/4

> Brack(f,-3,-0.5,11)

Method: Bracketing Method

Message: Converged after 47 iterations

The solution is: 7.143987 , and f(x) is -1.114449

Precision: 6.426126e-08

We can see how the algorithm works by looking at Figures 4.2 and 4.3. In the first one,

we reach the global minimum and in the second we only find a local one. The result

from the second set of starting values is:

> Brack(f,-3,-0.5,2)
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Method: Bracketing Method

Message: Converged after 47 iterations

The solution is: -1.460872 , and f(x) is -0.7512074

Precision: 9.313226e-09

−5 0 5 10

−
1.

0
−

0.
5

0.
0

0.
5

The convergence of the Bracketing Method

x

f(
x)

●

●

●

A

B

C

A

B

C

●

●

A

B

C

●

●A

B

C

●

●

A

B C

●
●

Figure 4.2: f(x) = sin (x− 0.04x2)− sin (x)
4

The above method is not the most efficient one. The method put the fourth point in

the middle of the largest interval between [a, b] and [b, c]. We can improve the number

of iterations by selecting another fraction. The Golden Section proceeds as follows: if

(b− a) > (c− b), then d = b− δ(c− a) and if (b− a) < (c− b), then d = a+ δ(c− a),

where δ = (3 −
√

5)/2. Assume that b = a + δ(c − a), which forms the original three

points, and the fourth point d is b+ ω(c− a).

● ● ●●

a b cda + δ(c − a) b + ω(c − a)

Since we either pick {a, b, d} or {b, d, c} the relative length is either:

d− a
c− a

= ω + δ
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Figure 4.3: f(x) = sin (x− 0.04x2)− sin (x)
4 (Different starting points)

or
c− b
c− a

= 1− δ

We minimize the worse scenario by making it equal to the best one. In other words,

we set (ω+ δ) = (1− δ) or ω = (1−2δ). Also, we assume, like for d, that b was optimal

so that (b− a)/(c− a) = (d− b)/(c− b) which implies:

δ =
d− b
c− b

=
ω(c− a)

c− b
= ω(1− δ)

If we combine δ(1 − δ) = ω and ω = (1 − 2δ), we get a second order polynomial with

the only positive solution being (3−
√

5)/2. The following uses the optimal ratio:

> Brack2(f,-3,-0.5,2)

Method: Bracketing Method

Message: Converged after 39 iterations

The solution is: -1.460872 , and f(x) is -0.7512074

Precision: 2.860287e-08

It is better, but not that much better. The algorithm has a linear convergence. There

exists a super-linear method for one dimensional problems. It is the Brent’s method.

It only defers in the way the fourth point is selected.
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4.1.2 Methods based on Derivatives

A method that only requires one staring point is the Newton’s Method. It is based on

the Taylor approximation of f(x):

p(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2

The solution of the minimization problem is:

x∗ = a− f ′(a)

f ′′(a)

We can therefore build our iterative scheme based on the solution:

xk+1 = xk −
f ′(xk)

f ′′(xk

The problem here is that we need the first and second derivative. The function I am

proposing is a general function that requires f to be an expression so that we can obtain

the derivatives using D():

Newton <- function(f, x0, eps = 1e-08, delta = 1e-08, maxit = 1000) {

go <- TRUE

n <- 1

mess <- NULL

res <- c(x0, eval(f, list(x = x0)))

Df <- D(f, "x")

DDf <- D(Df, "x")

conv <- T

while (go) {

x <- x0 - eval(Df, list(x = x0))/eval(DDf, list(x = x0))

crit1 <- abs(x - x0)/(1 + abs(x0))

crit2 <- abs(eval(Df, list(x = x0)))

go <- !(crit1 < eps & crit2 < delta)

res <- rbind(res, c(x, eval(f, list(x = x))))

if (n >= maxit) {

mess <- paste("maxit(", maxit, ") reached", sep = "")

conv <- FALSE

break

}

x0 <- x

n <- n + 1

}
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if (eval(DDf, list(x = x0)) <= 0)

mess2 <- "not satisfied" else mess2 <- "satisfied"

mess <- paste(mess, " (SOC ", mess2, ")", sep = "")

n <- nrow(res)

ans <- list(obj = res[n, 2], sol = x, x = res, name = "Newton's Method",

conv = conv, prec = crit1, mess = mess)

class(ans) <- "NonlinSol"

return(ans)

}

We can try the function using the example we use above. We see that the method

just finds stationary points. It could be a maximum or a minimum. We can see what

happens if we start at 10 and 8.5:

> f <- expression(sin(x-.04*x^2)-sin(x)/4)

> Newton(f,10)

Method: Newton's Method

Message: Converged after 6 iterations (SOC not satisfied)

The solution is: 11.36565 , and f(x) is 0.1485208

Precision: 7.757233e-15

> Newton(f,8.5)

Method: Newton's Method

Message: Converged after 5 iterations (SOC satisfied)

The solution is: 7.143987 , and f(x) is -1.114449

Precision: 3.667952e-10

By the number of iterations, it is much faster than the Bracketing Method. However,

it is very sensitive to starting values when we have multiple extrema. Figure 4.4 shows

the details of some iterations and different starting values (the functions for plotting

the convergence of the the Bracketing and Newton’s methods are available in the .R

file of Chapter 4 on the website of the course).

If we look at the example page 98 of Judd, we want to maximize the utility function:

U = x1/2 + 2y1/2

subject to the constraint 2x+ 3y = 1. We can solve this problem by substitution. By

doing it, the problem is reduced to a one dimensional optimization problem:

U =

(
1− 3y

2

)1/2

+ 2y1/2
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Figure 4.4: f(x) = sin (x− 0.04x2)− sin (x)
4 (Newton’s Method)

The solution must be between 0 and 1/3, so we can try the triplet (0,1/6,1/3) for the

Bracketing method and a starting value if .1 for the Newton’s method (we have to

return the negative of the utility because we have developed minimization algorithms).

Figures 4.5 and 4.6 show the details of the convergence.

> f <- function(x) -((1-3*x)/2)^.5-2*x^.5

> f2 <- expression(-((1-3*x)/2)^.5-2*x^.5)

> resB <- Brack(f,0,1/6,1/3)

> resN <- Newton(f2,.1)

> resB

Method: Bracketing Method

Message: Converged after 47 iterations

The solution is: 0.2424242 , and f(x) is -1.354006

Precision: 1.241763e-09

> resN

Method: Newton's Method

Message: Converged after 6 iterations (SOC satisfied)
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Figure 4.5: Minimization of −U = −x1/2 − 2y1/2, with x = (1 − 3y)/2 (Newton’s

Method)

The solution is: 0.2424242 , and f(x) is -1.354006

Precision: 1.268904e-14

The solution gives the optimal y. therefore have x =0.1364.

Suppose we want to solve the consumer problem:

max
x,y
−e−x − e−y

subject to

2x+ 3y = 10000

which implies the following unconstrained problem

max
y
−e−5000+1.5y − e−y

> f3 <- expression(exp(-5000-1.5*x)+exp(-x))

> resN <- try(Newton(f3,100,maxit=600))

> resN

Method: Newton's Method

Message: maxit(600) reached (SOC satisfied)

The solution is: 700 , and f(x) is 9.859677e-305

Precision: 0.001428571
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Figure 4.6: Minimization of −U = −x1/2− 2y1/2, with x = (1− 3y)/2 (The Bracketing

Method)

This is a case of scaling problem. The algorithm reached at some point the zero

(underflow), which result in a failure (if we don’t restrict the number of iterations).

One solution to this problem is to rewrite the problem as:

y − x = log (2/3)

2x+ 3y = 10000

And solve it using matrix algebra:

> A = matrix(c(-1,2,1,3),2,2)

> x = solve(A,c(log(2/3),10000))

> x

[1] 2000.243 1999.838

4.2 Multidimensional Optimization

4.2.1 A monopoly problem

Consider the problem in which a monopoly maximizes the following profit function:

Π(Y, Z) = Py(Y, Z)Y + Pz(Y,Z)Z − Cy(Y )− Cz(Z)
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where the inverse demands Py(Y,Z) and Pz(Y, Z) are derived from the utility function:

U =(Y α + Zα)η/α +M

=u(Y,Z) +M

where M is the dollar expenditure on other goods. In other words, the consumer’s

problem is:

max
Y,Z

u(Y,Z) + (I − PzZ − PyY ),

where I is the consumer’s income. It implies that Py(Y,Z) = uy(Y,Z) and Pz(Y,Z) =

uz(Y,Z). The monopoly problem is therefore:

max
Y,Z

uy(Y,Z)Y + uz(Y,Z)Z − Cy(Y )− Cz(Z),

where, Cy(Y ) = 0.62Y , Cz(Z) = 0.60Z, α = 0.98, and η = 0.85. In the book, the

author suggests to redefine the variables Y and Z to allow the admissible space to be

the real line. Because α is less than one, Y and Z cannot be negative. Such restrictions

may create problems. So we will solve for y = log Y and z = logZ instead. The

function is

Profit <- function(y, z) {

Y = exp(y)

Z = exp(z)

a = 0.98

n = 0.85

A = n * (Y^a + Z^a)^(n/a - 1)

R = A * (Y^a + Z^a) - 0.62 * Y - 0.6 * Z

return(-R)

}

There are two ways to see the shape of a three dimensional function in R. You can

use the contour() or the wireframe() from the lattice package. For the latter, I am

not transforming the variable because it makes the function look flat. It is easier that

way to see the shape. The solution of the problem is y = −0.562 (or Y = 0.57) and

z = 1.077 (or Z = 2.936).

> y <- seq(-1.5,0,length=200)

> z <- seq(0.5,1.5,length=200)

> x <- outer(y,z,Profit)

> contour(x=y,y=z,z=x,nlevels=20,xlab="log(Y)",ylab="log(Z)")
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> pretty.print(Profit2)

Profit2 <- function(Y, Z) {

a <- 0.98

n <- 0.85

A = n * (Y^a + Z^a)^(n/a - 1)

R = A * (Y^a + Z^a) - 0.62 * Y - 0.6 * Z

return(-R)

}

> library(lattice)

> z <- seq(2,4,length=50)

> y <- seq(0,2,length=50)

> res <- expand.grid(y,z)

> x <- Profit2(y<-res$Var1,z<-res$Var2)

> print(wireframe(x~y*z ,xlab="Y",ylab="Z",zlab="Profit",

+ scales = list(arrows = FALSE), drape = TRUE, colorkey = TRUE))
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Exercise 4.1. Build an algorithm that finds the minimum of a function using the Grid

Search method. The function will be: Grid(f,from, to, n, eps), where f is a function of

x, a k× 1vector, from and to are the lower and upper bounds of x, n is the number of

points per variable, and eps if the tolerance level. Test your function using the above

example.

4.2.2 Newton’s Method

The first method is the Newton’s Method. It is the multidimensional version of the one

presented in Section 4.1. The procedure is:

xk+1 = xk −H(xk)
−1J(xk),

where J() is the Jacobian and H() the Hessian of the function we are minimizing. If

f() is an expression, it is easy to build the algorithm:

getDer <- function(f, x) {

# x must contain the names of the variables

n <- length(x)

x <- as.list(x)

J <- vector()

H <- matrix(0, n, n)

for (i in 1:n) {

Df <- D(f, names(x[i]))

J[i] <- eval(Df, x)

for (j in 1:i) H[i, j] <- eval(D(Df, names(x[j])), x)
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}

H[upper.tri(H)] <- H[lower.tri(H)]

dimnames(H) <- list(names(x), names(x))

names(J) <- names(x)

return(list(H = H, J = J))

}

MNewton <- function(f, x0, eps = 1e-08, delta = 1e-08, maxit = 1000) {

n <- 1

conv = TRUE

mess <- NULL

fx <- eval(f, as.list(x0))

res <- c(x0, fx)

while (TRUE) {

resD <- getDer(f, x0)

H <- resD$H

J <- resD$J

x <- x0 - solve(H, J)

fx <- eval(f, as.list(x))

res <- rbind(res, c(x, fx))

crit1 <- sqrt(crossprod(x - x0))/(1 + sqrt(crossprod(x0)))

if (crit1 < eps) {

crit2 <- sqrt(crossprod(J))/(1 + abs(fx))

if (crit2 < delta)

break

}

if (n >= maxit) {

mess <- paste("maxit(", maxit, ") reached", sep = "")

conv = FALSE

break

}

x0 <- x

n <- n + 1

}

n <- nrow(res)

ans <- list(obj = res[n, ncol(res)], sol = x, x = res, name = "Newton's Method for Multidimensional Problems",

conv = conv, prec = crit1, mess = mess)

class(ans) <- "NonlinSol"

return(ans)

}
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We can then try it with the monopoly problem, and plot the result on a contour

plot:

> f <- expression(-0.85*(exp(y)^0.98+exp(z)^0.98)^(0.85/0.98-1)*(exp(y)^0.98 +

+ exp(z)^0.98)+0.62*exp(y)+0.6*exp(z))

> res <- MNewton(f,c(y=1,z=1))

> res

Method: Newton's Method for Multidimensional Problems

Message: Converged after 9 iterations

The solution is:

y = -0.5625466

z = 1.076945

f(x) is -0.3731764

Precision: 3.098286e-15

> y <- seq(-1,1.5,length=200)

> z <- seq(0,2,length=200)

> x <- outer(y,z,Profit)

> contour(x=y,y=z,z=x,nlevels=20,xlab="log(Y)",ylab="log(Z)")

> text(res$x[1:6,1],res$x[1:6,2]+.1,c("A","B","C","D","E","F"))

> points(res$x[1:6,1],res$x[1:6,2],pch=21,bg=2)

> lines(res$x[1:6,1],res$x[1:6,2],col=4)
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As for the unidimensional case, the method works well when we start not too far

from the solution or if the function is well behaved. For the monopoly problem, we

reach the solution using almost any starting values.

> MNewton(f,c(y=-3,z=7))

Method: Newton's Method for Multidimensional Problems

Message: Converged after 14 iterations

The solution is:

y = -0.5625466

z = 1.076945

f(x) is -0.3731764

Precision: 1.217689e-14

> MNewton(f,c(y=7,z=12))

Method: Newton's Method for Multidimensional Problems

Message: Converged after 22 iterations

The solution is:

y = -0.5625466

z = 1.076945

f(x) is -0.3731764

Precision: 4.912389e-09

Exercise 4.2. Write a function that combines the Newton’s and the Grid Search meth-

ods. It must use the grid search function you built for Exercise 4.1 to find a starting

vector. The latter is then, use to initiate the Newton’s Method. Try it with the monopoly

problem.

4.2.3 Direction Set Methods

Most optimization algorithms in R or any other numerical software are Direction Set

Methods. The general step is

xk+1 = xk + λksk,

where sk is a vector representing the search direction and λk is a scalar. All methods

differ in their respective choice of the search direction sk. On the other hand, the

method for computing λk is identical. If we want to minimize f(x), λk is defined as:

λk = arg min
λ
f(xk + λsk)
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Exercise 4.3. Write a function that compute λk. The function must have the form:

getLambda(f, x, s), where f is either an expression or a function (it is up to you). You

can also allow the two possibilities. You can verify your function by using the Profit

function. You should get (The function is hidden from the notes):

> print(getLambda(f,c(y=1,z=1),c(1,0)))

[1] -1.378165

We can summarize the different methods as follows (we consider the problem of

minimizing f(x), with x ∈ Rn:

� Coordinate Direction: sk = ei for i = 1, ..., n for each iteration (n directions

by iteration), where ei is the n× 1 vector with the ith element equals to 1 and all

others being equal to zero. (Always find a minimum when the function is smooth

but may be slow)

� Steepest Descent: sk = −J(xk) (Always find a minimum when the function is

smooth but may be slow)

� Newton’s Method with Line Search: sk = −H(xk)
−1J(xk). As opposed to

the Newton’s Method, it will always go downhill.

� Broyden-Fletcher-Goldfarb-Shanno (BFGS): sk = −H(xk)
−1J(xk), but

Hk is just an approximation of the hessian matrix. Starting with H0 = I, the

updates are:

Hk+1 = Hk −
Hkzkz

′
kHk

z′kHkzk
+
yky
′
k

y′kzk
,

where zk = xk+1−xk and yk = J(xk+1)−J(xk). Whenever, y′kzk ≈ 0, Hk+1 = Hk.

� Conjugate Gradient: This method does not require the Hessian matrix; only

the Jacobian. The steps are: s0 = −J(x0) and

sk+1 = −J(xk+1) +
‖J(xk+1)‖2

‖J(xk)‖2
sk

and reset sk to −J(xk) every n iterations.

� Gauss-Newton Method for Nonlinear Least Squares: This method is spe-

cific to the following problem:

f(x) =

T∑
i=1

e2i (x),
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where ei(x) is the ith residual (here, x is the vector of coefficients). Let the

T × n matrix J(x) be the Jacobian of the vector of residuals e(x). Than the

Gauss-Newton step is:

sk = −[J(xk)
′J(xk)]

−1[J(xk)
′e(xk)]

It is like the Newton’s Method but the Hessian is approximated by [J(xk)
′J(xk)].

We first consider an application of the Gauss-Newton method. Lets consider the fol-

lowing Box-Cox transformation:

yλi − 1

λ
= α+ βzi + ei

The vector x is {λ, α, β}. The ith line of J is then:

J(x)[i, ] =
∂ei
∂x

=
(
yλi [λ log (yi)−1]+1

λ2
−1 −zi

)
The following function applies the method but without line search:

GaussNewton <- function(f, x0, dat, eps = 1e-08, delta = 1e-08,

maxit = 1000) {

# f produces the vector of residuals dat must be a list, x0

# a named vector

Jfct <- function(x, dat) {

J <- eval(D(f, names(x)[1]), c(as.list(x), dat))

for (i in 2:length(x)) J <- cbind(J, eval(D(f, names(x)[i]),

c(as.list(x), dat)))

return(J)

}

n <- 1

conv = TRUE

mess <- NULL

fx <- eval(f, c(as.list(x0), dat))

res <- c(x0, sum(fx^2))

while (TRUE) {

J <- Jfct(x0, dat)

H <- crossprod(J)

J <- crossprod(J, fx)

x <- c(x0 - solve(H, J))

names(x) <- names(x0)

fx <- eval(f, c(as.list(x), dat))

res <- rbind(res, c(x, sum(fx^2)))
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crit1 <- c(sqrt(crossprod(x - x0))/(1 + sqrt(crossprod(x0))))

if (crit1 < eps) {

crit2 <- sqrt(crossprod(J))/(1 + abs(fx))

if (crit2 < delta)

break

}

if (n >= maxit) {

mess <- paste("maxit(", maxit, ") reached", sep = "")

conv = FALSE

break

}

x0 <- x

n <- n + 1

}

n <- nrow(res)

ans <- list(obj = res[n, 2], sol = x, x = res, name = "Gauss-Newton's Method for NLS Problems",

conv = conv, prec = crit1, mess = mess)

class(ans) <- "NonlinSol"

return(ans)

}

We can see that the method does not work well for the Box-Cox estimation. Even

if we try different starting values, the algorithm diverges. The problem is that the

approximated Hessian becomes singular.

> f <- expression((y^l-1)/l -a -z*b)

> library(Ecdat)

> data(Consumption)

> C <- Consumption[,"ce"]

> z <- ts(1:length(C),freq=4,start=c(1947,1))

> dat <- list(y=C,z=z)

> res2 <- try(GaussNewton(f,c(l=.25,a=56,b=.2),dat,maxit=50,eps=1e-4))

> cat(res2[1])

Error in solve.default(H, J) :

system is computationally singular: reciprocal condition number = 1.1135e-16

In some cases, however, it works fine. Consider the following nonlinear model:

Yi = α1 + α2α3xi + α2
2zi + εi

In the following, I test the method using simulated data with α1 = 2, α2 = 3, and

α3 = 5. We can see that the method works fine.
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> x <- rnorm(200)

> z <- rnorm(200)

> y <- 2+3*5*x+9*z+rnorm(200)

> f <- expression(y-a1-a2*a3*x-a2^2*z)

> dat <- list(y=y,x=x,z=z)

> x0 <- c(a1=0,a2=1,a3=1)

> res3 <- try(GaussNewton(f,x0,dat,maxit=100))

> print(res3)

Method: Gauss-Newton's Method for NLS Problems

Message: Converged after 7 iterations

The solution is:

a1 = 1.989565

a2 = 3.021293

a3 = 5.019381

f(x) is 3.021293

Precision: 0

Exercise 4.4. Reproduce the results from Table 4.12 (Section 4.11) of Judd. You have

to compare the Newton and Gauss-Newton Methods for the following model:

y = αx1 + βx2 + β2x3 + ε

The residual sum of squares is:

S(α, β) =38.5− 5.24α− 7.56α2 − 6.10β + 9.96αβ

− 3.44β2 + 11.4αβ2 + 11.6β3 + 7.71β4

I conclude the section with a function to compute the BFGS method. For that

function, I require f to be a function and we have to provide a function that computes

the Jacobian. This setup does not exclude the use of symbolic derivatives. Here is an

example using the Box-Cox model:

fBC <- function(beta, dat) {

e <- expression((y^l - 1)/l - a1 - a2 * x)

sum(eval(e, c(as.list(beta), dat))^2)/2

}

DfBC <- function(beta, dat) {

e <- expression((y^l - 1)/l - a1 - a2 * x)
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J <- eval(D(e, names(beta)[1]), c(as.list(beta), dat))

for (i in 2:length(beta)) J <- cbind(J, eval(D(e, names(beta)[i]),

c(as.list(beta), dat)))

et <- eval(e, c(as.list(beta), dat))

crossprod(J, et)

}

To allow both the case of theoretical and empirical models, The ”...” can be passed to

f and grad when we need to use data or set other parameter values.

BFGS <- function(f, x0, grad, eps = 1e-08, delta = 1e-08, maxit = 100,

...) {

n <- 1

conv = TRUE

mess <- NULL

fx <- f(x0, ...)

res <- c(x0, fx)

H <- diag(length(x0))

while (TRUE) {

J <- grad(x0, ...)

s <- solve(H, -J)

l <- getLambda(f, x0, s, -50, 50, ...)

x <- x0 + l * s

names(x) <- names(x0)

fx <- f(x, ...)

res <- rbind(res, c(x, fx))

crit1 <- sqrt(crossprod(x - x0))/(1 + sqrt(crossprod(x0)))

if (crit1 < eps) {

crit2 <- sqrt(crossprod(J))/(1 + abs(fx))

if (crit2 < delta)

break

}

if (n >= maxit) {

mess <- paste("maxit(", maxit, ") reached", sep = "")

conv = FALSE

break

}

zk <- (x - x0)

yk <- J - grad(x, ...)

T1 <- c(t(yk) %*% zk)

T2 <- H %*% zk %*% t(zk) %*% H
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T3 <- c(t(zk) %*% H %*% zk)

if (abs(T1) > 1e-07)

H <- H - T2/T3 + (yk %*% t(yk))/T1

n <- n + 1

x0 <- x

}

n <- nrow(res)

ans <- list(obj = res[n, 2], sol = x, x = res, name = "BFGS Method",

conv = conv, prec = crit1, mess = mess)

class(ans) <- "NonlinSol"

return(ans)

}

Lets try it on the monopoly problem:

f <- function(x) {

fexp <- expression(-0.85 * (exp(y)^0.98 + exp(z)^0.98)^(0.85/0.98 -

1) * (exp(y)^0.98 + exp(z)^0.98) + 0.62 * exp(y) + 0.6 *

exp(z))

eval(fexp, as.list(x))

}

Df <- function(x) {

fexp <- expression(-0.85 * (exp(y)^0.98 + exp(z)^0.98)^(0.85/0.98 -

1) * (exp(y)^0.98 + exp(z)^0.98) + 0.62 * exp(y) + 0.6 *

exp(z))

Df <- vector()

for (i in 1:length(x)) Df[i] <- eval(D(fexp, names(x)[i]),

as.list(x))

Df

}

> res4 <- BFGS(f,x0=c(y=1,z=1),grad=Df)

> res4

Method: BFGS Method

Message: Converged after 8 iterations

The solution is:

y = -0.5625466
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z = 1.076945

f(x) is 1.076945

Precision: 3.479056e-09

The convergence is faster than the Newton’s method. We see why on the next figure
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Exercise 4.5. Answer the following questions

1. Write a function that solves optimization problems by the Coordinate Direction

with Line Search.

2. Write a function that solves optimization problems by the Steepest Descent with

Line Search.

3. Write a function that solves optimization problems by the Newton’s Method with

Line Search.

4. Write a function that solves optimization problems by the Conjugate Gradient

with Line Search.

5. Using the above monopoly example, Compare the Coordinate Direction, the Steep-

est Descent, the Newton’s Method with Line Search, the Conjugate Gradient, the

BFGS, and the Newton’s Method on a contour plot.

6. Compare your methods with optim() (compare the values of the coefficients and

the function, and the number of iterations)
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Exercise 4.6. Answer question 1 of Chapter 4 of Judd (but do not use the Polytope

method).

Exercise 4.7. Answer question 2 of Chapter 4 of Judd.

4.2.4 Finite Differences

To avoid having to derive the analytical derivatives, it is possible to compute the

derivatives using finite differences. The derivatives are:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

We can approximate the derivatives by:

f ′(x) ≈ f(x+ h)− f(x)

h

for some small h. To be precise, h should be of order
√
εf |xc|, where εf is the rounding

error from evaluating f(x) and xc is [f(x)/f ′′(x)]1/2 (see [Press et al. 2007] page 229

for more details). This is meant to minimize the error. However, the following rule

works most of the time: h = max(ε1|x|, ε2), where ε1 can be around the square root of

the machine-epsilon (10−8), and ε2 is a not too small number. The latter is to prevent

problems when x is close to zero. If we set ε2 = 10−4, h will take that value whenever

|x| < 104. The following computes the numerical derivative of any function:

myDerive <- function(f, x, eps1 = 1e-08, eps2 = 1e-04) {

h <- max(eps1 * abs(x), eps2)

(f(x + h) - f(x))/h

}

Lets try it for the following functions at x = 3: f1(x) = exp(x), f2(x) = log(x),

f3(x) = (x2 − x), f4(x) = x3 sin (x): A better precision can be obtained by using the

Estimated derivative True Derivative relative error

f1(x) 20.08654 20.08554 0.00005

f2(x) 0.33333 0.33333 0.00002

f3(x) 5.00010 5.00000 0.00002

f4(x) -22.92229 -22.91956 -0.00012

following formula:

f ′(x) ≈ f(x+ h)− f(x− h)

2h
,

which requires h to be of order ε
1/3
f |xc|. Comparing the two methods is left as an

exercise.
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Exercise 4.8. Write a function that computes the derivative of f(x) using the above

formula. Compare it with the first method using the same 4 functions.

Exercise 4.9. Write two functions to compute the Jacobian and the Hessian of f(x),

where x ∈ Rn. Use the second method presented above.

4.3 Constrained optimization

Suppose we want to solve:

max
x1,x2

x
1/3
1 x

2/3
2

subject to:

3x1 + 5x2 = 1000

In this section, we only look at the Penalty Method. Instead of imposing the constraint

we penalize the objective function if it violates it. We can write the model as follows:

max
x1,x2

x
1/3
1 x

2/3
2 − P (3x1 + 5x2 − 1000)2

P is the cost of violating the constraint. We can than apply any method (the true

solution is x1 = 111.11, and x2 = 133.33):

> f <- expression(-x1^(1/3)*x2^(2/3) + 10*(3*x1+5*x2-1000)^2)

> x0 <- c(x1=10,x2=10)

> MNewton(f,x0,eps=1e-8,delta=1e-8,maxit=1000)

Method: Newton's Method for Multidimensional Problems

Message: Converged after 5 iterations

The solution is:

x1 = 111.1118

x2 = 133.3342

f(x) is -125.4719

Precision: 1.062379e-10

Here, the precision is not valid.w={0,.5,.8,1.1,2,2,2,1.5,1,0} We see that the third dec-

imal is contaminated. To increase the precision, we need to increase P.

> f <- expression(-x1^(1/3)*x2^(2/3) + 10^3*(3*x1+5*x2-1000)^2)

> MNewton(f,x0,eps=1e-8,delta=1e-8,maxit=1000)



4.3. Constrained optimization 111

Method: Newton's Method for Multidimensional Problems

Message: Converged after 5 iterations

The solution is:

x1 = 111.1111

x2 = 133.3333

f(x) is -125.4715

Precision: 1.062403e-10

The solution is much more accurate. It even works for corner solution such as:

max
x1,x2

x1 + x2

subject to

3x1 + 5x2 = 1000

x1, x2 ≥ 0,

where the solution is x1 = 1000/3 = 333.33 , and x2 = 1.

> f <- function(x)

+ {

+ -x[1]-x[2]+1000*(3*x[1]+5*x[2]-1000)^2+

+ 1000*(min(0,x[2]))^2 + 1000*(min(0,x[1]))^2

+ }

> Df <- function(x)

+ {

+ D1 <- -1+6000*(3*x[1]+5*x[2]-1000)

+ D2 <- -1+10000*(3*x[1]+5*x[2]-1000)

+ D1 <- D1 + ifelse(x[1]>=0,0,2000*x[1])

+ D2 <- D2 + ifelse(x[2]>=0,0,2000*x[2])

+ return(c(D1,D2))

+ }

> print(try(BFGS(f,x0=c(x1=10,x2=10),grad=Df)))

Method: BFGS Method

Message: maxit(100) reached

The solution is:

x1 = 333.3339

x2 = -0.0003336555
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f(x) is -0.0003336555

Precision: 2.999955e-09

Exercise 4.10. Solve the problem:

max
x1,x2

x21 + x22

subject to

6x1 + 8x2 = 4800,

using the Penalty Method and the BFGS algorithm. Choose P to obtain a 4-digit

precision.

Exercise 4.11. Consider the following problem:

max
x1,x2

= (xα1 + xα2 )η/α

subject to

P1(1− τ)x1 + P2(1− τ)x2 = I,

where τ is the tax rate. Using the Penalty Method and the BFGS algorithm, write a

function that plot the estimated demand function for x1. The function must look like

x1(p1,p2,t,alpha,eta,I).

4.4 Applications

4.4.1 Principal-Agent Problem

An agent offers his service to a principal. The possible outputs are {y1, ..., yn} and the

wage given to the agent by the principal is wi iif y = yi because y is the only thing

the principal observes. The level of effort, L ∈ {L1, ..., Lm}, that the agent chooses,

affects the distribution of output through the conditional distribution gi(L) = Prob(y =

yi|L = L). The best alternative contract for the agent pays R. Therefore, he will take

the job if the expected utility is at least R. The principal’s problem is:

max
L,wi

E[UP (y − wi)]

subject to

E[UA(w,L)] ≥ E[UA(w,Li)] i = 1, ...,m Incentive constraints

E[UA(w,L)] ≥ R Reservation constraint

We suppose there are 2 states and the principal is risk neutral. The values are: L ∈
{0, 1}, {y1, y2} = {0, 2} with probability {0.2, 0.8} if L = 1 and {0.6, 0.2} if L = 0. The
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utility function of the agent is −e−2w + 1− d(L), where d(0) = 0 and d(1) = 0.1. The

agent’s utility from his best alternative is R = −e−2 + 0.9. The principal’s problem is

therefore:

max
L∗,w1,w2

E(y − w|L)

subject to

E[d(w)− d(L∗)|L = L∗] ≥ E[d(w)− d(0)|L = 0]

E[d(w)− d(L∗)|L = L∗] ≥ E[d(w)− d(1)|L = 1]

E[d(w)− d(L∗)|L = L∗] ≥ R
Exercise 4.12. Write a function that solves the above Principal-Agent’s problem. It

is not like in the textbook because Judd sets L∗ to 1. Here L is discrete and wi are

continuous variables. Use the numerical algorithm that you want.

4.4.2 Efficient Outcomes with Adverse Selection

We have two types of agent and a social planner that offers insurance. There are two

states: a bad one (2), and a good one (1). Types H and L receive e1 > e2 with

probability πH and πL respectively. with πL < πH . The proportion of type i is θi, for

i = L,H. In each state j, agents of type i pay a premium of ej − yij and consumes yij .

The profit of the social planner is therefore:

Π =
∑
i=H,L

θi[πi(e1 − yi1) + (1− πi)(e2 − yi2)]

The expected utility of type i agents is therefore:

U i(yi) = πiui(yi1) + (1− πi)ui(yi2) i = H,L

Suppose the Social Planner puts a weight λ on type H agents and (1− λ) on type L,

his problem is:

max
yij

λUH(yH) + (1− λ)UL(yL)

subject to

UH(yH) ≥ UH(yL)

UL(yL) ≥ UL(yH)

Π ≥ 0

So you want the type H to prefer the insurance that provides the contingent consump-

tion {yH1 , yH2 } and the type L to prefer {yL1 , yL2 }, and you want the Social Planner to

have none negative profit.

Exercise 4.13. Write a function to solve the above Adverse Selection problem for

λ = {0, .25, .5, .75, 1} and θH = {0.1, 0.75}. You can suppose that πL = 0.5, πH = 0.8,

e1 = 1, e2 = 0, and ui(y) = −e−y for i = L,H. Interpret your results.
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4.4.3 Computing Nash Equilibrium.

We consider a general simultaneous game with n players. We suppose that each player i

has a finite number Ji of possible strategies: {s1i, ..., sJii}. A mixed strategy for player

i, σi, is a Ji×1 vector of probabilities associated with each strategy. Therefore, σij ≥ 0

and
∑Ji

j=1 σij = 1. To understand the notation, let us consider the following battle of

sexes game:

Player 2

Opera Hockey
1

Opera 1

1

0

0

P
la

ye
r

Hockey 0

0

1

1

We have J1 = J2 = 2, and si ={Opera,Hockey} for i = 1, 2. A mixed strategy for

player i is σi = {pi, (1 − pi)} where pi = Prob(si =Opera). Let M(s) be the payoff

function. For a given vector of strategies, s, it returns an n×1 vector of payoffs. In the

battle of sexes game, M(s) is represented by the above matrix. We have, for example,

M(Opera,Opera) = {1, 1}′, or M(Opera,Hockey) = {0, 0}′. We can generalize the

payoff function to include mixed strategies:

Mi(σ) =
∑
s

σ(s)Mi(s)

In our example, σi1 = pi and σi2 = (1− pi). Therefore:

M1(σ) =p1[p2(1) + (1− p2)(0)] + (1− p1)(p2(0) + (1− p2)(1)]

=p1p2 − (1− p1)(1− p2)
=M2(σ),

We define Mi(sij , σ−i) as the payoff of player i when he plays the pure strategy sij and

the other players play the mixed strategy σ. Let us define the following function:

v(σ) =

n∑
i=1

∑
sij

[max{Mi(sij , σ−i)−Mi(σ), 0}]2

McKelvey (1992) shows that Nash Equilibia are both the minima and the zeros of v(σ).

In our example, M1(s11, σ−1) = p2 and M1(s12, σ−1) = (1− p2), and M2(s21, σ−2) = p1
and M2(s22, σ−2) = (1− p1). Therefore,

v(σ) ≡v(p1, p2)

=[max{0, p2 −M1(σ)}]2 + [max{0, (1− p2)−M1(σ)}]2

+ [max{0, p1 −M2(σ)}]2 + [max{0, (1− p1)−M2(σ)}]2



4.4. Applications 115

It means that playing any pure strategy cannot result in payoffs higher than the payoffs

from playing the mixed strategy σ. The different equilibria are obtained by minimizing

v(σ) using different starting values, and by verifying that the solution that we obtain

implies that v(σ) = 0.

Exercise 4.14. Write a function that computes Nash equilibria for general 2-player

games. The number of possible strategies for each player may differ. The matrix of

payoffs can be a list of matrices (2 J1 × J2 matrices) or a 3 dimensional array (J1 ×
J2 × 2). Use your function to answer question 4 of Chapter 4 of Judd.

4.4.4 Portfolio Problem

Consider an economy with n assets. Asset 1 is risk free and its price is p1 = 1. This

is a two period model in which investors are endowed with {e1, ..., en} units of assets

in period 1 and must choose how much to consume and how much to save for next

period consumption. They can purchase {ω1, ..., ωn} units of assets in period one at

{1, p2, ..., pn}. The assets will be worth {Z1, ..., Zn} in period 2. Period 1’s budget

constraint is therefore:
n∑
i=1

piωi + c =
n∑
i=1

piei

and the investors wants to maximize the expected utility of the two periods:

EU = u(c) + E

{
u

(
n∑
i=1

ωiZi

)}

Exercise 4.15. Answer the following questions:

1. Solve the Portfolio Problem with: n = 3, u(c) = −e−ac, a ∈ {−0.5,−1,−5},
Z1 = 2, Z2 ∼ {0.72, 0.92, 1.12, 1.32} with probabilities {1/4, 1/4, 1/4, 1/4}, Z3 ∼
{0.86, 0.96, 1.06, 1.16} with probabilities {1/4, 1/4, 1/4, 1/4}, p = {1, .5, .5}, and

e = {2, 2, 2}. We also suppose that Z2 and Z3 are independent. Interpret your

results (for the all a’s).

2. Suppose now that p = {1, .3, .4}. Is there a solution to the problem? Why? Add

the assumption that short sales are forbidden and try to solve the problem for all

a’s. Interpret the results.

4.4.5 Dynamic Optimization

Consider an individual who lives n periods. At each period t, he allocates his wage wt
between consumption ct and saving St. We suppose the interest rate r is constant. The
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individual’s problem is to maximize his future discounted utility:

max
St

T∑
t=1

βtu(St−1(1 + r) + wt − St),

subject to S0 = ST = 0. We therefore have to solve for St, t = 1, ..., (T − 1).

Consider the following case: u(c) = −exp(−c), β = 0.9, r = .0.2, T = 10, and

w = {0, .5, .8, 1.1, 2, 2, 2, 1.5, 1, 0}. The following graph shows the result:
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Exercise 4.16. Write a function that solves the above dynamic optimization problem

with r ∈ {−.05, 0.2, 0.5}. Plot St and Ct for the different rt and interpret your results.
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5.1 One-dimensional problems

Consider the problem of computing the yield to maturity of a coupon-bond with semi-

annual coupon of $50, par value of $1,000, maturity of 10 years, and a price of $850.

The formula that links the bond price and the yield is:

P =
C

y/2
+

(
PAR− C

y/2

)
(1 + y/2)−2T ,

where C is the coupon, y is the yield to maturity compounded semiannually, T is the

maturity, and PAR is the par value. In our problem, we want to solve:

f(y) = 850− 50

y/2
−
(

1000− 50

y/2

)
(1 + y/2)−20 = 0

The following graph shows the shape of f(y):
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One possibility is to solve the problem using a grid-search. In the above example, we

know that the solution must be between 0 and 1, which makes it easy to construct the

grid. The following function is an example of how to do it. The stopping rule is: stop

if a) f(xi) < 0, f(xj) > 0 ,and either b) max(xi, xj)−min(xi, xj) < ε(1 + |xi|+ |xj |),
or c) |f((xi + xj)/2)| < δ.

YieldGrid <- function(from, to, n, eps = 1e-06, delta = 1e-06,

maxit = 100, P = 850, PAR = 1000, C = 50, N = 2, T = 10) {

f <- function(y) P - C/(y/N) - (PAR - C/(y/N)) * (1 + y/N)^(-N *

T)

y <- seq(from, to, len = n)

fVal <- f(y)

neg <- fVal < 0

if (all(neg) | all(!neg))

stop("There is no solution between from and to")

t <- 1

while (TRUE) {

if (neg[1]) {

to <- y[which(!neg)][1]

from <- y[which(!neg) - 1][1]

} else {

to <- y[which(neg)][1]

from <- y[which(neg) - 1][1]

}
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check <- (to - from) < eps * (1 + abs(from) + abs(to)) |

abs(f((from + to)/2)) < delta

if (t >= maxit) {

mess <- "No convergence: maxit reached"

break

}

if (check) {

mess <- paste("Converged after ", t, " iterations",

sep = "")

break

}

y <- seq(from, to, len = n)

fVal <- f(y)

neg <- fVal < 0

t <- t + 1

}

ans <- list(sol = (from + to)/2, fct = f((from + to)/2),

message = mess, iter = t, name = "Grid Search for Yield to Maturity",

prec = to - from)

class(ans) <- "Zeros"

return(ans)

}

print.Zeros <- function(obj) {

cat("\nMethod: ", obj$name, "\n")

cat("Message: ", obj$mess, "\n\n")

if (length(obj$sol) == 1)

cat("The solution is: ", obj$sol, ", and f(x) is ", obj$fct,

"\n") else {

cat("The solution is: \n")

if (is.null(names(obj$sol)))

names(obj$sol) <- paste("x", 1:length(obj$sol), sep = "")

for (i in 1:length(obj$sol)) cat(names(obj$sol)[i], " = ",

obj$sol[i], "\n")

cat("\nf(x) is ", obj$fct, "\n")

}

cat("Precision: ", obj$prec, "\n")

}

The function is for general case and it produces an object of class ”Zeros”. All algorithms
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of this chapter will produce the same type of object, The solution is:

> YieldGrid(.01,1,50,eps=1e-9)

Method: Grid Search for Yield to Maturity

Message: Converged after 6 iterations

The solution is: 0.1268917 , and f(x) is 1.666213e-07

Precision: 7.152515e-11

The method converges after 6 iterations. It may look efficient at first but since there

are 50 function evaluations per iteration, the solution is reached after 300 function

evaluations. We can do much better than that.

5.1.1 The Bisection Method

There is no analytical solution to the above problem, bu we can easily find the solution

using a bracketing method called the Bisection. All we need is two points a < b that

are such that the signs of f(a) and f(b) are different. We then consider a third point

c = (a + b)/2, and replace a by c if the sign of f(a) and f(c) are the same, and

inversely if the signs of f(b) and f(c) are the same. The Stopping rule is: stop if either

b− a < ε(1 + |a|+ |b|), or |f((a+ b)/2)| < δ. The following function computes the zero

of a function between a and b using that method:

Bisection <- function(f, a, b, eps = 1e-07, delta = 1e-07, maxit = 100) {

fa <- f(a)

fb <- f(b)

t <- 1

if (a >= b)

stop("a must be strictly smaller than b")

if (fa * fb >= 0)

stop("f(a) and f(b) have different signs")

res <- vector()

while (TRUE) {

fc <- f(c <- (a + b)/2)

if (fa * fc > 0) {

a <- c

fa <- fc

} else {

b <- c

fb <- fc

}
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res <- rbind(res, c(c, fc))

if (t >= maxit) {

mess <- "No convergence: maxit reached"

break

}

check <- (b - a) < eps * (1 + abs(a) + abs(b)) | abs(fc) <

delta

if (check) {

mess <- paste("Converged after ", t, " iterations",

sep = "")

break

}

t <- t + 1

}

ans <- list(sol = c, fct = fc, message = mess, iter = t,

name = "Bisection", prec = (b - a), x = res)

class(ans) <- "Zeros"

return(ans)

}

We can then try it using the same problem:

> f <- function(y,P=850, PAR=1000, C=50, N=2, T=10)

+ P-C/(y/N)-(PAR-C/(y/N))*(1+y/N)^(-N*T)

> Bisection(f,.01,1)

Method: Bisection

Message: Converged after 23 iterations

The solution is: 0.1268917 , and f(x) is -0.0004022902

Precision: 1.180172e-07

It is much better than the grid search if we consider that the algorithm evaluated the

function only 23 times. The following graph shows the convergence of the method.
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The solution of course depends on the choice of a and b. Is there are multiple

solutions, it will find one solution in [a, b]. To see that, consider an exchange economy

with 2 goods and 2 agents. The utility of agent i is (page 154 of Judd):

ui(x1, x2) =
ai1x

γi+1
1

γi + 1
+
ai2x

γi+1
2

γi + 1
, i = 1, 2,

where aij ≥ 0, and γi < 0. Let ηi = −1/γi, e
i = {ei1, ei2} be the endowment of

agent i, and Y i = p1e
i
1 + p2e

i
2 be the income of agent i. The equilibrium condition is

d1j (p) + d2j (p) = e1j + e2j for goods j = 1, 2. By Walras’s law, we only need to solve for

one of the two goods. If we normalize the prices such that p1 + p2 = 1, the equilibrium

condition is:

f(p1) = d11(p1, 1− p1) + d21(p1, 1− p1)− e11 − e21 = 0

with

d11(p1, 1− p1) =
(a11)

η1

(a11)
η1p1−η11 + (a12)

η1(1− p1)1−η1
Y 1p−η11

d21(p1, 1− p1) =
(a21)

η2

(a21)
η2p1−η21 + (a22)

η2(1− p1)1−η2
Y 2p−η21

To solve the problem, I am constructing a new object of type utility, and we define two

agents with the parameter values determined on page 154 of Judd.

CES <- function(par) {

names(par) <- NULL

good = TRUE

if (length(par) != 5 | par[3] >= 0 | any(par[1:2] < 0) |
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any(par[4:5] < 0))

good <- FALSE

par <- c(a = par[1:2], gamma = par[3], eta = -1/par[3], e = par[4:5])

f <- expression(a1 * x1^(gamma + 1)/(gamma + 1) + a2 * x2^(gamma +

1)/(gamma + 1))

X1 <- expression((a1^eta/(a1^eta * p1^(1 - eta) + a2^eta *

p2^(1 - eta))) * (p1 * e1 + p2 * e2) * p1^(-eta))

X2 <- expression((a2^eta/(a1^eta * p1^(1 - eta) + a2^eta *

p2^(1 - eta))) * (p1 * e1 + p2 * e2) * p2^(-eta))

Y <- expression(e1 * p1 + e2 * p2)

Indif <- expression((((gamma + 1) * U - a1 * x1^(gamma +

1))/a2)^(1/(gamma + 1)))

fct <- paste("U = (", par[1], "*X1^", par[3] + 1, " + ",

par[2], "*X2^", par[3] + 1, "/(", par[3] + 1, sep = "")

ans <- list(Uexp = f, Sol = list(X1 = X1, X2 = X2), par = par,

name = "CES", fct = fct, Indif = Indif, good = good,

Y = Y)

class(ans) <- "Utility"

return(ans)

}

> cons1 <- consumer("John",c(1024,1,-5,12,1),utility="CES")

> cons2 <- consumer("Bill",c(1,1024,-5,1,12),utility="CES")

We can then easily compute the function that defines the equilibrium condition:

Kehoe <- function(p1) {

d1 <- sapply(1:length(p1), function(i) solve(cons1, c(p1[i],

1 - p1[i]), F)$x1)

d2 <- sapply(1:length(p1), function(i) solve(cons2, c(p1[i],

1 - p1[i]), F)$x1)

d1 + d2 - cons1$par[4] - cons2$par[4]

}

The following graph shows the shape of the excess demand function. There are three

possible equilibria.
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If we try to solve it using the above Bisection method using different a and b, we

obtain:

> Bisection(Kehoe,.01,.4)

Method: Bisection

Message: Converged after 22 iterations

The solution is: 0.1129238 , and f(x) is 2.06554e-07

Precision: 9.298325e-08

> Bisection(Kehoe,.4,.7)

Method: Bisection

Message: Converged after 19 iterations

The solution is: 0.5000002 , and f(x) is 9.765621e-08

Precision: 5.722046e-07

> Bisection(Kehoe,.7,.9)

Method: Bisection

Message: Converged after 19 iterations

The solution is: 0.8870762 , and f(x) is -2.175291e-08

Precision: 3.814697e-07
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Easy when we know the solutions. If the interval contains more than one solution,

the result is uncertain:

> Bisection(Kehoe,.01,.9)

Method: Bisection

Message: Converged after 23 iterations

The solution is: 0.1129239 , and f(x) is -1.799073e-07

Precision: 1.060963e-07

> Bisection(Kehoe,.01,.99)

Method: Bisection

Message: Converged after 1 iterations

The solution is: 0.5 , and f(x) is 3.552714e-15

Precision: 0.49

> Bisection(Kehoe,.1,.99)

Method: Bisection

Message: Converged after 21 iterations

The solution is: 0.887076 , and f(x) is 9.026282e-08

Precision: 4.243851e-07

5.1.2 Newton’s Method

For the Newton’s method, we first get the linear approximation of f(x) around x0, and

find the zero of the linear function. We have f(x) ≈ f(x0) + f ′(x0)(x−x0) = 0 , which

implies that x = x0 − f(x0)/f
′(f0). The algorithm is therefore:

xk+1 = xk −
f(xk)

f ′(xk)

The stopping rule is similar to the one we used in the last chapter except that we

want to check if f(xk+1) = 0 is satisfied instead of f ′(xk+1) = 0. So we stop if

|xk − xk+1| < ε(1 + |xk+1|) and conclude that we have a solution if |f(xk+1| < δ. I

wrote a function to compute the solution using the Newton’s Method. I don’t show it

to you because it is the next exercise. The function requires as arguments, f(x) and

df(x). We can test it using the the above examples.
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> Yield <- NewtonNL(f,df,.25)

> Equil <- NewtonNL(Kehoe,dKehoe,.55)

> Yield

Method: Newton

Message: Converged after 6 iterations

The solution is: 0.1268917 , and f(x) is 0

Precision: 6.642408e-10

> Equil

Method: Newton

Message: No convergence: maxit reached (Bad convergence, f(x) not zero)

The solution is: 0.5129672 , and f(x) is 0.006465041

Precision: 0.01818518
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The method works fine for the Yield problem, but not for the Kehoe’s model. We

can see on the graph that it gets stuck in a cycle around the solution. This result

depends on the properties of the function around the solution. If we try another

starting value, we see that the first equilibrium can easily be found. But for many

starting values, the Newton’s method diverges (try it).

> print(Equil2 <- NewtonNL(Kehoe,dKehoe,.14))

Method: Newton

Message: Converged after 8 iterations

The solution is: 0.1129238 , and f(x) is 3.594499e-08

Precision: 5.734584e-08
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Exercise 5.1. Write a function that solve f(x) = 0 using the Newton’s Method. Test

it on the previous examples.

Exercise 5.2. Write a function that solve f(x) = 0 using the Newton’s Method with

acceleration or stabilization parameter ω. Test it on the previous examples.

5.2 Multivariate Nonlinear Equations

Here, we consider methods to solve f(x) = 0, where f is a function from Rn to Rn.

We consider the following Duopoly problem: There are two goods, X and Z, and the

utility of consumers is

U = u(Y,Z) +M = (1 + Y α + Zη)η/α +M

The profit functions of firm Y and Z are:

ΠY (Y,Z) = uy(Y, Z)Y − CY Y,

and

ΠZ(Y, Z) = uz(Y, Z)Z − CzZ.

The first order condition is:
∂ΠY (Y,Z)

∂Y
= 0

and
∂ΠZ(Y,Z)

∂Z
= 0

My function produces a vector f(x) or the Jacobian J(x).
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Pi <- function(x, d = 0) {

Y <- exp(x[1])

Z <- exp(x[2])

alpha <- 0.999

eta <- 0.2

Cy <- 0.07

Cz <- 0.08

U <- expression((1 + Y^alpha + Z^alpha)^(eta/alpha))

dUy <- D(U, "Y")

Piy <- paste(dUy[2], dUy[1], dUy[3], "*Y-Cy*Y", sep = "")

Piy <- parse(text = Piy)

dUz <- D(U, "Z")

Piz <- paste(dUz[2], dUz[1], dUz[3], "*Z-Cz*Z", sep = "")

Piz <- parse(text = Piz)

dPiy <- D(Piy, "Y")

dPiz <- D(Piz, "Z")

if (d == 0)

c(eval(dPiy), eval(dPiz)) else {

J <- c(eval(D(dPiy, "Y")), eval(D(dPiz, "Y")), eval(D(dPiy,

"Z")), eval(D(dPiz, "Z")))

matrix(J, 2, 2)

}

}

5.2.1 Newton’s Method

The multivariate version of the Newton’s method is:

xk+1 = xk − J(xk)
−1f(xk)

NewtonMNL <- function(f, x0, eps = 1e-07, delta = 1e-07, maxit = 100) {

t <- 1

f0 <- f(x0)

df0 <- f(x0, 1)

while (TRUE) {

x <- x0 - solve(df0, f0)

f0 <- f(x)

df0 <- f(x, 1)

if (t >= maxit) {

mess <- "No convergence: maxit reached"

break
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}

check <- sqrt(crossprod(x - x0)) < eps * (1 + sqrt(crossprod(x0)))

if (check) {

mess <- paste("Converged after ", t, " iterations",

sep = "")

break

}

t <- t + 1

x0 <- x

}

if (sqrt(crossprod(f0)) > delta)

mess <- paste(mess, " (Bad convergence, f(x) not zero)",

sep = "")

ans <- list(sol = x, fct = f0, message = mess, iter = t,

name = "Multivariate Newton for Nonlinear System", prec = sqrt(crossprod(x -

x0))/(1 + sqrt(crossprod(x0))))

class(ans) <- "Zeros"

return(ans)

}

> NewtonMNL(Pi,c(-1.9,-1.4))

Method: Multivariate Newton for Nonlinear System

Message: Converged after 22 iterations

The solution is:

x1 = -0.1374651

x2 = -0.5759185

f(x) is 4.646666e-10 2.077254e-09

Precision: 5.820559e-08

5.2.2 Gauss Methods

As for the linear case, you can solve the problem using methods such as Gauss-Jacobi or

Gauss-Seidel. They replace the n-dimensional problem by n one-dimensional problems.

There are two possible approaches. In the first, the one-dimensional problems are solve

completely, and in the second, they are solved using a linear approximation. For the

Gauss-Jacobi, we obtain xk+1
i either by solving

f(xk−i, x
k+1
i ) = 0
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or using the the Taylor approximation:

xk+1
i = xki −

f i(xk)

f ixi(xk)

For the Gauss-Seidel, we update the xki as soon as there are available. I give you the

result using the function I wrote. You have to write your own function as an exercise.

Method: Gauss-Jacobi for Nonlinear System

Message: Converged after 17 iterations

The solution is:

x1 = -0.1374662

x2 = -0.5759235

f(x) is 7.309127e-08 1.641704e-07

Precision: 5.029531e-09

Method: Gauss-Seidel for Nonlinear System

Message: Converged after 9 iterations

The solution is:

x1 = -0.1374662

x2 = -0.5759236

f(x) is 7.311276e-08 1.642665e-07

Precision: 2.692622e-09

Method: Linear Gauss-Jacobi for Nonlinear System

Message: Converged after 32 iterations

The solution is:

x1 = -0.1374652

x2 = -0.5759184

f(x) is 1.217085e-10 -4.077542e-10

Precision: 9.638562e-09

Method: Linear Gauss-Seidel for Nonlinear System

Message: Converged after 28 iterations

The solution is:
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x1 = -0.1374651

x2 = -0.5759184

f(x) is 1.028884e-10 -2.664104e-10

Precision: 8.026069e-09

Exercise 5.3. Write a function to solve the system of n equations f(x) = 0 using the

Gauss-Jacobi and Gauss-Seidel methods. For solving the one-dimensional problems,

use the R function uniroot()

Exercise 5.4. Write a function to solve the system of n equations f(x) = 0 using the

linear approximation version of the Gauss-Jacobi and Gauss-Seidel methods.

5.2.3 Broyden’s Method

The Broyden’s method is similar to the Newton’s method with the exception that it

approximate the Jacobian and update it at each iteration as the BFGS method does

for the Hessian matrix. Let Ak be the approximation of J(xk), starting with A0 = I,

the update is:

Ak+1 = Ak +
(yk −Aksk)s′k

s′ksk

where yk = f(xk+1)−f(xk). The idea is to have a matrix Ak+1 that satisfies Ak+1sk =

f(xk + sk) − f(xk), a properties that is satisfied by the Jacobian. In fact, for any

direction q, J(x)q approximates f(x+ q)− f(x). In the one dimensional case, we have

f ′(x)h ≈ f(x + h) − f(x). You can verified that the above updating scheme satisfies

Ak+1sk = yk.

Method: Broyden's Method

Message: Converged after 36 iterations

The solution is:

x1 = -0.1374651

x2 = -0.5759184

f(x) is -1.434133e-11 1.172107e-11

Precision: 6.79486e-08

As it is expected, the approximated Jacobian makes it a little slower than the Newton’s

Method. The advantage is for large systems because it avoids the computation of the

Jacobian at each iteration for which the number of operations is of order n2.

Exercise 5.5. Write a function that solves f(x) = 0, for f(x) : Rn → Rn, using the

Broyden’s Method. Test your method on the above duopoly example.
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5.2.4 The nleqslv package

The nleqslv package of [Hasselman 2012] provides functions for solving systems of non-

linear equations. The main function is nleqslv() which uses either the Newton or the

Broyden’s method. The function uses a method similar to the one we saw in the last

chapter for improving the convergence speed. The updating scheme is xk+1 = xk+λsk.

The lambda is selected using a kind of line search. The criterion is base on the impact

of the step on f(x)′f(x). The options are:

� The first three are respectively x0, f and J , where f and J are functions.

� method = either ”Broyden” of ”Newton”

� global = different method for selecting the λ. You can choose ”none” if you want

λ = 1

� xscalm = method for re-scaling the x’s. You always make sure the xi’s have

comparable scales.

� control = list(): Many parameter to adjust if you want. For example, xtol and ftol

are what we call ε and δ in the above algorithms, maxit the number of iterations,

trace=1 will print the details of each iterations, and a bunch of other tuning

parameters.

To see how it works, we apply it to the duopoly problem.

> library(nleqslv)

> dPi <- function(x)

+ Pi(x,1)

> nleqslv(c(-1,-2),Pi,dPi)

$x

[1] -0.1374651 -0.5759186

$fvec

[1] -1.782566e-09 3.254971e-09

$termcd

[1] 1

$message

[1] "Function criterion near zero"

$scalex
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[1] 1 1

$nfcnt

[1] 15

$njcnt

[1] 1

See the help() to understand all code. In particular we see that there is only one

Jacobian evaluation (because it is the Broyden’s Method) and 15 function evaluations.

5.2.5 Example

Consider the endowment economy in which there are m goods, and n agents with

utilities:

ui(x) =

m∑
j=1

aijx
vij+1
j

1 + vij
, i = 1, ..., n,

endowed with eij units of good j, where m = n = 10, and the coefficients are obtained

randomly as follows (for a, e and v, the ith row is for the ith agent and the jth column

the jth good):

> set.seed(445)

> n <- 10

> m <- 10

> a <- matrix(runif(n*m,1,10),n,m)

> v <- matrix(runif(n*m,-3,-0.5),n,m)

> e <- matrix(runif(n*m,1,5),n,m)

By using Walras law and the normalization
∑m

i=1 pi = 1, the problem is to solve the

following equations:

E1(p) =0

E2(p) =0

...

Em−1(p) =0
m∑
i=1

pi =1,

where Ei(p) is the excess demand of good i.



5.2. Multivariate Nonlinear Equations 135

Exercise 5.6. Solve the equilibrium problem of the above endowment economy. Use

the algorithm that you want but Ei(p) must be obtained numerically using the optimizer

of your choice.
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6.1 Numerical Integration

We introduce the section with two examples. In the first, we consider the following

portfolio optimization problem:

max
ωi

E

[
U

(
n∑
i=1

ωiZi

)]
(6.1)

subject to
n∑
i=1

pi(ωi − ei) = 0 (6.2)

It may look like a simple maximization problem, but it is not. The difficulty comes

from the fact that we have to maximize an expected value, which can be written as:

E

[
U

(
n∑
i=1

ωiZi

)]
=

∫ ∫
· · ·
∫
U

(
n∑
i=1

ωiZi

)
f(Z1, Z2, ..., Zn)dZ1dZ2 · · · dZn

In the basic model, we assume that the preferences are mean-variance, an assumption

that can be satisfied if either U() is quadratic or the vector Z is characterized by

an elliptical distribution. In that case. only the mean and the variance matter, and

the investors choose a combination of the risk free asset and the market portfolio. It

simplifies the problem, but does not eliminate the need to compute integrals. For
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the applications bellow, we will assume that investors have a CRRA utility function

u(c) = c1+γ/(1 + γ). For Z, we will make different assumptions.

The second problem is quite simple. We only want to compute the future profit of

a firm over the horizon t = [0, T ], with q(t) = 3− (1 + t+ t2)e−t, P (q(t)) = q(t)−2, and

C(q(t)) = q(t)3/2. The profit is therefore is:∫ T

0
e−rt[P (q(t))q(t)− C(q(t))]dt (6.3)

We will just cover few methods to understand the idea behind numerical integration,

and conclude by showing you the tools available in R.

6.1.1 Newton-Cotes

The following graph shows the shape of the profit function in equation (6.3) for the

horizon [0,4] with the Midpoint rule.
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The midpoint rule approximate the integral by adding the areas of the rectangles

A and B. The error of the method is given by (b − a)3f ′′(ξ)/96, where ξ is between a

and b. Therefore, the method is exact when f(x) is a straight line because in that case

f ′′(ξ) = 0. Here the integral as been divided in 2. In general, the method is:∫ b

a
f(x)dx ≈

n∑
i=1

hf(xi)

and the error is given by the expression h2(b − a)f ′′(ξ)/24 = (b − a)3f(ξ)/(24n2) for

n equally spaced points, which implies that the error is of order n−2. In the example
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shown on the graph, n = 2, x1 = 1, x2 = 3, and h = 2. We can easily build a function

for this method:

MidPoint <- function(f, a, b, n, ...) {

h <- (b - a)/n

x <- seq(a + h/2, b - h/2, len = n)

sum(h * f(x, ...))

}

> print(Int1 <- MidPoint(Prof,0,4,20))

[1] 1.058281

The error is 2.8e-05. The Trapezoid rule is represented in the next graph.
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And the approximation is valid up to h2(b−a)f ′′(ξ)/12. Therefore, there is no clear

difference between the two method. The method is∫ b

a
f(x)dx ≈ h

2
[f(a) + 2f(x1) + · · ·+ 2f(xn−1) + f(b)]

Trapezoid <- function(f, a, b, n, ...) {

x <- seq(a, b, len = n)

h <- x[2] - x[1]

sum(h * c(f(x[-c(1, n)], ...), f(x[c(1, n)], ...)/2))

}

> print(Int2 <- Trapezoid(Prof,0,4,20))
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[1] 1.058194

The error is 6e-05, which a little higher than the one from the Midpoint rule. The

Simpson’s Rule, approximate the function between points by a second order polyno-

mial as shown on the following graph, and compute the analytical integral of this

approximation.
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The error is of order n−4 (or O(h4)) if the fourth derivative of f(x) is bounded. In

fact, the expression for the error is h4(b− a)f (4)(ξ)/180 which is the kind of expression

used by functions such as integrate() in R to estimate the error. It can be computed

as follows.

Simpson <- function(f, a, b, n, ...) {

n <- floor(n/2) * 2 + 1

x <- seq(a, b, len = n)

z <- rep(c(4, 2), (n - 3)/2)

z <- c(1, z, 4, 1)

h <- x[2] - x[1]

sum(z * f(x, ...) * h/3)

}

> print(Int3 <- Simpson(Prof,0,4,20))

[1] 1.058266

The error is 1.3e-05.
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Suppose we want to compute E(X), where the density of X is f(x). Then, we need

to get: ∫ ∞
−∞

xf(x)dx

For the integral to be bounded, we need the integrand xf(x) to go to zero when |x|
goes to infinity. Therefore, we can approximate the integral by

∫ b
a xf(x)dx, for some

good choice of a and b. Here, we allow the upper and lower bounds to be different. Let

f(x) be the density of a N(5, 1), here is few results using different a and b:

> f <- function(x)

+ x*dnorm(x,mean=5)

> Simpson(f,-4,4,40)

[1] 0.5512882

> Simpson(f,2,8,40)

[1] 4.986499

> Simpson(f,0,10,40)

[1] 4.999997

It is clear here that (−4, 4) is not the right choice because the integrand is not centered

at 0. In some special cases, we can recompute the same integral using a change of

variables to make the bounds finite. For example, we can use the following change of

variable for the above integral: x(z) = log [z/(1− z)], which implies:∫ ∞
−∞

xf(x)dx =

∫ 1

0

1

z(1− z)
x(z)f(x(z))dz

We can verify that the derivatives of the new integrand are all bounded if f(x) is the

density of a normal distribution (a necessary requirement). The following, function

would do the job:

f2 <- function(z) {

x <- log(z/(1 - z))

i <- ifelse(z == 1 | z == 0, 0, x * dnorm(x, mean = 5)/(z *

(1 - z)))

ifelse(abs(i) < 1e-13, 0, i)

}

> Simpson(f2,0,1,40)
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[1] 0.896398

The result is not very good. The problem here is that the function is close to zero

almost everywhere except between 0.9 and 1, as we can see on the following graph:
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We need more points when the slope of the function changes quickly. We also want

to avoid adding values that are dominated by rounding errors:

> Simpson(f2,0.8,1,1000)

[1] 4.999595

6.1.2 Gauss Methods

The Gauss approach is to approximate the function using orthogonal basis, and to

choose optimal weights and nodes simultaneously. In fact, the nodes and weights are

such that ∫ b

a
f(x)w(x)dx =

n∑
i=1

ωif(xi)

holds exactly for all polynomial of degree 2n− 1, f(x). The integrating function w(x)

defines the inner product < f, g > so that the basis used to approximate f(x) are

orthogonal and standardized with respect to this inner product (see Chapter 6 of Judd

for more details). The different sets of basis are given in Table 6.3, page 204, of Judd.

There is an optimal quadrature for each w(x), but we can also do a change of variable

when w(x) is missing. For example, the Gauss-Chebyshev, w(x) = (1− x2)−1/2, and it
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is defined only between -1 and 1, but we can modify a simple integral as follows:∫ b

a
f(x)dx =

b− a
2

∫ 1

−1
f

(
(x+ 1)(b− a)

2
+ a

)
(1− x2)1/2

(1− x2)1/2
=

∫ 1

−1
g(x)(1− x2)−1/2dx

which can be approximated as:∫ 1

−1
g(x)(1− x2)−1/2dx ≈π

n

n∑
i=1

g(xi)

=
π

n

n∑
i=1

(
b− a

2
f

(
(xi + 1)(b− a)

2
+ a

)
(1− x2i )1/2

)
with

xi = cos

(
2i− 1

2n
π

)
We see that the weights ωi for that method are all equal to π/n. The following,

implement the Gauss-Chebyshev method

GaussChebyshev <- function(f, a, b, n, ...) {

x <- cos((2 * (1:n) - 1) * pi/(2 * n))

y <- f((x + 1) * (b - a)/2 + a, ...) * (1 - x^2)^(0.5) *

pi * (b - a)/(2 * n)

sum(y)

}

> GaussChebyshev(f2,0,1,40)

[1] 4.848546

The function does not do as bad as the Simpson method which performs badly even

with n=200:

> Simpson(f2,0,1,200)

[1] 4.344921

> GaussChebyshev(f2,0,1,200)

[1] 4.999986

The package ”statmod” by [Smyth et al. 2011] has a tool to compute the nodes and

weights for many quadratures. For example, we could rewrite the GaussChebyshev()

function as follows:
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GaussChebyshev <- function(f, a, b, n, ...) {

x <- gauss.quad(n, kind = "chebyshev1")$nodes

y <- f((x + 1) * (b - a)/2 + a, ...) * (1 - x^2)^(0.5) *

pi * (b - a)/(2 * n)

sum(y)

}

> library(statmod)

> GaussChebyshev(f2,0,1,200)

[1] 4.999986

For Gauss-Legendre, w(x) = 1, and the range is [−1, 1]. It is therefore easy to compute∫ b
a f(x)dx. We only need a change of variable for the range [a, b]. Here is the method:

GaussLegendre <- function(f, a, b, n, ...) {

res <- gauss.quad(n, kind = "legendre")

x <- res$nodes

w <- res$weights

y <- w * f((x + 1) * (b - a)/2 + a, ...) * (b - a)/2

sum(y)

}

> GaussLegendre(f2,0,1,200)

[1] 4.999998

The Gauss-Hermite quadrature is particularly useful to compute E(f(x)) when x ∼
N(µ, σ2). Indeed, its integrating function is w(x) = e−x

2
, and the range is [−∞,∞].

The approximation is: ∫ ∞
−∞

f(y)e−y
2
dx ≈

n∑
i=1

ωif(yi)

If we want to compute E[f(y)], where y ∼ N(µ, σ2), we need to define the new variable

x = (y − µ)/(σ
√

2) which implies:

E[f(y)] =
1√
π

∫ ∞
−∞

f(σx
√

2 + µ)e−x
2
dx

When we use the gauss.quad() function to generate the weights and nodes, [a, b] is a

function of the number of points n. By increasing n we automatically increase a and

|b|, as we can see:

> gauss.quad(4,kind="hermite")$nodes
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[1] -1.6506801 -0.5246476 0.5246476 1.6506801

> gauss.quad(10,kind="hermite")$nodes

[1] -3.4361591 -2.5327317 -1.7566836 -1.0366108 -0.3429013 0.3429013

[7] 1.0366108 1.7566836 2.5327317 3.4361591

> gauss.quad(20,kind="hermite")$nodes

[1] -5.3874809 -4.6036824 -3.9447640 -3.3478546 -2.7888061 -2.2549740

[7] -1.7385377 -1.2340762 -0.7374737 -0.2453407 0.2453407 0.7374737

[13] 1.2340762 1.7385377 2.2549740 2.7888061 3.3478546 3.9447640

[19] 4.6036824 5.3874809

Therefore, the function only depends on n.

GaussHermite <- function(f, n, ...) {

res <- gauss.quad(n, kind = "hermite")

x <- res$nodes

w <- res$weights

y <- w * f(x, ...)

sum(y)

}

Suppose we want to compute the expected utility E(u(c)), where c = 1 + ez, z ≡
log (Z) ∼ N(µ, σ2) with, µ = 0.15 and σ = 0.25, and u(c) = c1+γ/(1+γ), with γ = −2,

then:

U <- function(x, mu, sigma, gamma) {

y <- sqrt(2) * sigma * x + mu

c <- 1 + exp(y)

c^(1 + gamma)/(1 + gamma)/sqrt(pi)

}

> GaussHermite(U,200,mu=.15,sigma=.25,gamma=-2)

[1] -0.4631344

We can then see the impact of increasing σ or µ

> GaussHermite(U,200,mu=.15,sigma=.5,gamma=-2)

[1] -0.4646496
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> GaussHermite(U,200,mu=.5,sigma=.25,gamma=-2)

[1] -0.3792901

The last quadrature is the Gauss-Laguerre. It is useful for computing future dis-

counted profit or utility because w(x) = e−x. You can apply the quadrature in the

next exercise.

Exercise 6.1. Use the Gauss-Laguerre quadrature to compute:

η

(
η − 1

η

)η−1 ∫ ∞
0

e−rtm(t)1−ηdt,

where m(t) = 2− e−λt, and η = 0.8. Try to reproduce Table 7.7, page 265 of Judd (you

will need to do a change of variable here).

Exercise 6.2. Write a function that computes integrals with adaptive quadrature. The

function starts with a small n and increases it until the value only changes by a certain

tolerance level. Try to make it flexible and test it on the above examples.

6.1.3 Numerical integration with R

The function integrate() can be use in general. However, we need to be careful. To

estimate E(Y ), where Y ∼ N(5, 1), we can do it as follows:

> f <- function(x)

+ dnorm(x,mean=5)*x

> integrate(f,lower=-Inf,upper=Inf)

5 with absolute error < 6e-05

It is not recommended to use big numbers instead of infinity as we can see:

> integrate(f,lower=-1000,upper=1000)

0 with absolute error < 0

The algorithm fails in that case. I recommend you to read carefully the help file for

integrate() before using it. The following shows how to compute the expected utility

that we computed in the previous section.

> U2 <- function(x, mu, sigma, gamma)

+ {

+ c <- 1+exp(x)

+ u <- c^(1+gamma)/(1+gamma)
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+ u*dnorm(x,mean=mu,sd=sigma)

+ }

> f <- function(x)

+ U2(x,.15,.25,-2)

> integrate(f,-Inf,Inf)

-0.4631344 with absolute error < 0.00011

Exercise 6.3. In a statistical method called the Generalized Empirical Likelihood for

a continuum, we need to compute an n× n matrix C with

cij =

∫ ∞
−∞

e−(xi−xj)
2t2φ(t)dt,

where φ(t) is the density of the standardized normal distribution, and xi is observation

i. Find a fast way to construct that matrix, and test your method with the 2000 × 1

vector x generated from a N(10, 2).

6.1.4 Numerical derivatives with R

Here is how to do numerical derivative in R. The following is taken from

help(numericDeriv) file.

> myenv <- new.env()

> assign("mean", 0., envir = myenv)

> assign("sd", 1., envir = myenv)

> assign("x", c(-2,0,2), envir = myenv)

> grad <- numericDeriv(quote(pnorm(x, mean, sd)), c("mean", "sd"), myenv)

> attr(grad,"gradient")

[,1] [,2]

[1,] -0.05399097 0.1079819

[2,] -0.39894228 0.0000000

[3,] -0.05399097 -0.1079819

Exercise 6.4. Write a function df(f,x) and ddf(f,x) that return the Jacobian and Hes-

sian of f(x) : Rn → R, using numericDeriv().
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Monte Carlo Simulation
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7.1 Introduction

We want to look at methods to compute integrals or to solve optimization problems

based on simulations. Here is a simple example. Suppose you want to compute the

value of π. We all know that it is the area of a unit circle. But it is also the probability

of being in a unit circle inside a 2× 2 square if we randomly draw numbers uniformly

over the square times the area of the square, which is 4. The following figure shows the

idea.
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By counting the proportion of points in the circle, we estimate π:
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> n <- 2000000

> x <- runif(n,-1,1)

> y <- runif(n,-1,1)

> mean(abs(y^2+x^2)<=1)*4

[1] 3.141298

It is accurate up to 3 decimals. As you see, we need a lot of points to get that level

of accuracy. In some problems, however, Monte Carlo simulations are the only feasible

way to get an estimate of the solution we are looking for.

In order to perform Monte Carlo simulations, we need a random number generator.

Such generators do not exist in practice. We use pseudo-random generators, which

are deterministic formulas that generate numbers that approximate the properties of

random numbers. That’s the reason some purists will call these methods pseudo Monte

Carlo to point out that we are not using real random numbers. A uniform pseudo

random number can be generated as:

Xk+1 = aXk + b (mod m),

where N (mod m) is the remainder of N/m, and X0 is called the seed and must

be an odd number. Therefore, for any given seed, we have the same sequence of

pseudo random number. For example, consider the following homemade pseudo random

generator:

myUnif <- function(n, a, c, m, seed) {

seed <- (seed%/%2) * 2 + 1

x <- seed

for (i in 2:(n + 1)) x[i] <- (x[i - 1] * a + c)%%m

return(x[-1]/m)

}

We can see on the following figure that the function produces numbers between 0 and

99 (because 0 ≤ N (mod m) ≤ (m− 1)) that look random.

> x <- myUnif(20,263,71,100,79)

> plot(x)
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However, the sequence has a period of 20:

> x <- myUnif(40,263,71,100,79)

> matrix(x,ncol=2)[1:5,]

[,1] [,2]

[1,] 0.48 0.48

[2,] 0.95 0.95

[3,] 0.56 0.56

[4,] 0.99 0.99

[5,] 0.08 0.08

To get a longer sequence we have to change the seed every 20 numbers. Here is a

much realistic choice of the parameters (the period is 536870912):

> x <- myUnif(1000,16807,0,2147483647,79)

> plot(x)
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We call them pseudo random numbers because they are perfectly predictable once

we know the seed. Other pseudo random numbers can be generated using the following.

Let F () be a distribution function. If x ∼ U(0, 1), then y = F−1(x) has a distribution

function F (y). We can then construction a N(0, 1) pseudo random number as follows:

> x <- myUnif(1000,16807,0,2147483647,79)

> y <- qnorm(x)

> qqnorm(y)

> qqline(y)
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7.2 Econometrics

We first look at some examples of Monte Carlo simulations in econometrics. In fact,

many think that those numerical experiments are reserved to econometrics. We will

see that it is not the case in the next sections.

One application is to analyze the properties of estimators. For example, the OLS

estimator of the regression Y = Xβ + u, can be written as:

β̂ = β + (X ′X)−1X ′u

We want to show that β̂ is biased whenever E(u|x) 6= 0. In other words we want to

measure E(β̂) and see if it is equal to β. But E(β̂) is:

E(β̂)− β =

∫
· · ·
∫

(X ′X)−1X ′uf(x1, x2, ..., xk, u)dx1 · · · dxkdu

We could assume a distribution f(x1, x2, ..., xk, u) and compute the integral, but it

would be hard for large systems. What we do instead, we generate samples, estimate

β̂ for each sample, and compute the sample mean of the β̂’s. By the law of large

numbers, this method should give us a consistent estimate of E(β̂). For example,

suppose that u ∼ N(0, 1), X1 ∼ U(0, 1), X2 = .4u + 2Z + U(0, 1), Z ∼ U(0, 1), and

Y = 1 + 2X1 + 3X2 + u. We don’t know the joint distribution of X1, X2, and u. It

is therefore hard to compute the integral. The Monte Carlo approach, however, is not

too hard. We can compare the bias of OLS and GMM with 500 iterations and a sample

size of 50. Notice that we would get a better estimate by increasing the number of

iterations.

> library(gmm)

> library(multicore)

> set.seed(123)

> n <- 50

> N <- 500

> u <- matrix(rnorm(n*N),n,N)

> x1 <- matrix(runif(n*N),n,N)

> Z <- matrix(runif(n*N),n,N)

> x2 <- .4*u + 2*Z + matrix(runif(n*N),n,N)

> y <- 1+2*x1+3*x2+u

> beta <- mclapply(1:N,function(i) lm(y[,i]~x1[,i]+x2[,i])$coef)

> beta_GMM <- mclapply(1:N,function(i) gmm(y[,i]~x1[,i]+x2[,i],~x1[,i]+Z[,i])$coef)

> beta <- simplify2array(beta)

> beta_GMM <- simplify2array(beta_GMM)

> bias <- rowMeans(beta)-c(1,2,3)

> names(bias) <- c("b0","b1","b2")
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> bias <- rbind(bias,rowMeans(beta_GMM)-c(1,2,3))

> rownames(bias) <- c("OLS","GMM")

b0 b1 b2

OLS -1.0689 0.0293 0.6965

GMM -0.0099 0.0226 -0.0043

Table 7.1: Bias of OLS versus GMM

Computing biases and variances of estimators for small samples can only be done using

Monte Carlo methods, because all we know about estimators in practice is how they be-

have when the sample size goes to infinity; thanks to the several central limit theorems

and laws of large numbers. For example, GMM estimators are asymptotically unbiased,

but in small samples, the bias increases with the number of moment conditions. We

can easily show that results using simulations. Some economists derived some proofs

which only applies to large samples, but to do so, they had to go through very messy

algebraic manipulations. In the next sections, we use simulations as an alternative to

methods we covered in previous chapters.

7.3 Integration

Consider the following integral:

I =

∫ b

a
f(x)dx

Suppose X ∼ U(a, b), what is the definition of the expected value of f(x)? It is simply

E(f(x)) =
1

b− a

∫ b

a
f(x)dx

In other words: ∫ b

a
f(x)dx = (b− a)E(f(x)) with X ∼ U(a, b)

We can than estimate the integral using the sample mean of f(x) and n U(a, b) pseudo

random numbers. Here is a small function:

MCInt <- function(f, a, b, n) {

x <- runif(n, a, b)

fv <- f(x)
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I <- mean(fv * (b - a))

sigma <- sd(fv) * (b - a)/sqrt(n)

return(list(I = I, sigma = sigma))

}

It returns the estimated integral and the estimated standard deviation of the estimate.

Since it is an estimation, we need the standard error to measure the accuracy. Lets try

it with the profit function (6.3) that we used in the last chapter. We want to compare

it with the value obtained with integrate():

> integrate(Prof,0,4)

1.058253 with absolute error < 1.4e-10

> MCInt(Prof,0,4,1000)

$I

[1] 1.056388

$sigma

[1] 0.01073861

The variance of the estimated integral can be reduced by a proper choice of distributions

and points. The main idea is to concentrate the points to areas in which the function

f(x) is high. Since the goal of the chapter is only to introduce you to Monte Carlo

methods, we will skip that part.

This may seem useless, but suppose we want to compute EU(c), where c =∑n
i=1wiri and f(z1, z2, ...zn) be the joint density of z. Then we need to compute

an nth order integral. Monte Carlo methods can be much faster in those cases. One

area that uses simulations intensively to compute integrals is Bayesian econometrics,

but it is beyond the scope of that course.

7.4 To be completed latter

In a future version of the notes, I will talk about methods such as Simulated Annealing

which are simulations methods for minimizing functions of n variables. They are slow

methods that approximate the minimum, but can solve problems that conventional

method cannot. I’ll reserve it for Numerical Method II

Exercise 7.1. Consider the utility function U(c) = −e−c, where c = (1− w)R + wZ,

with R = 1.01, and Z ∼ N(1.06, 0.04). Solve:

max
w
−E(e−c)
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using a Monte Carlo simulation to compute the expected values. Compare the precision

of your solution for the number of points N = 50, 200, 1000, 5000.
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8.1 Introduction

In this chapter, we are interested in problems that can be written as:

dy

dx
= f(x, y), (8.1)

where x ∈ [a, b], y ∈ Rn, and f : Rn+1 → Rn. This is called a system of first order

”Ordinary Differential Equation” (ODE). This is a very general representation of dif-

ferential equations because higher order equations can always be redefined as a first

order equation be an appropriate change of variable. For example, the second order

differential equation y′′(x) = f(y′(x), y, x) can be written as a system of two first order

differential equations: z′(x) = f(z, y, x), and y′(x) = z. The goal is to obtain the

solution y(x) that satisfies equation 8.1.
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For example, consider the following simple Solow growth model:

k̇ ≡ dk

dt
=sf(k)− δk

f(k) =kα
(8.2)

This is a special case of equation 8.1 with x = t ∈ [0,∞], y = k, and f(t, k) =

sk(t)α − δk(t). Before going through numerical methods to solve ODE’s, lets see how

we can solve it analytically. I am not going into all possible cases. I just want to give

you some notions. First, there is no analytical solution to the problem 8.2. We can

write:

k(t) = k(0) +

∫ t

0
[sk(t)α − δk(t)]dt,

but we cannot solve it because we don’t know the function k(t). Second, we need more

information in order to find k(t). The ODE only informs us about the behavior of the

derivative k̇. Finding k(t) only based on the problem 8.2 is like finding xt = f(t) based

only on (xt+1 − xt) = a. However, if we know that x0 = c, we can obtain xt = x0 + at.

Solutions to nonlinear differential equations only exist in closed form for a few cases.

Lets consider a simpler case:

y′(x) = ay(x) + b,

where a < 0. The solution of differential equation, as it is also the case for difference

equations, has two parts: a complementary solution Sc and a particular solution Sp.

To first is obtained by solving the homogeneous version of the ODE, y′(x) = ay(x), and

the second is the solution for a particular value of x, which is often the steady state

value, −b/a. We can write the homogeneous part of the ODE as:

dy

y
= adx

If we integrate both side, we obtain: ∫
dy

y
=

∫
adx

log(y) =ax+ C

Sc = Ceax

It implies that the general solution is y(t) = Ceat − b/a. The final solution is obtained

by setting y(x), for x ∈ [a, b], to some value y0, which gives the value of the integrating

constant C = y0 + b/a. The solution is therefore:

y(t) =

(
y0 +

b

a

)
eat − b

a



8.2. Finite Difference Methods for initial value problems 159

For nonlinear equations, there are special cases for which solutions can be found. For

example, if the ODE can be written as f(y)dy = g(x)dx, in which case we say that the

variables are separable, we can solve it by integrating both sides. However, separable

variables is not a sufficient condition for the closed form solution to exist. For example,

the Solow model can be written as:∫
1

skα − δk
dk = t+ C,

but even if the integral exists, we cannot isolate k(t). The problem with solving differ-

ential equations is like the problem of integrating. The best method is determined on

a case by case basis. Fortunately, we have easier numerical methods to solve any ODE.

8.2 Finite Difference Methods for initial value problems

Lets consider the following ODE:

dy

dx
= −0.6(y − 10)(x− 1) (8.3)

with y(0) = 9e−0.3 + 10. It is a weird starting value that produce a nice solution:

y(x) = 9e−0.3(x−1)
2

+ 10

The following graph shows the solution of the ODE:

0 1 2 3 4

12
14

16
18

Solution y(x) of an ODE

x

y(
x)



160 Chapter 8. Differential Equations

8.2.1 Euler’s Method

Lets consider the general case:

y′(x) = f(x, y),

for x ∈ [a, b], and y(a) = y0. Lets consider n + 1 points xi, i = 0, ..., n, such that

xi = a+ ih, where h is the step size. The Euler’s method is based in the result:

y(xk+1)− y(xk) =

∫ xk+1

xk

f(x, y(x))dx

By the rectangle rule, the right hand side can be approximated by hf(xk, y(xk)), which

gives us the Euler’s algorithm:

yk+1 = yk + hf(xk, yk)

with the stating point (x, y) = (a, y0). The following figure show the result for the

problem 8.3 for different h.

f <- function(x, y) -0.6 * (y - 10) * (x - 1)

myODE <- function(f, n, a, b, y0) {

h <- (b - a)/n

x <- a + h * (0:n)

y <- y0

for (i in 2:(n + 1)) y[i] <- y[i - 1] + h * f(x[i - 1], y[i - 1])

return(list(x = x, y = y, h = h))

}

0 1 2 3 4
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14
16

18
20

The Euler's Method

x

y(
x)

True
h = 0.4
h = 0.2
h = 0.133
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8.2.2 Implicit Euler’s Method

We saw that the Euler’s method overshoots the solution at the beginning. One way to

improve the solution is to evaluate the function at the end point in the rectangle rule

above. That results in the following implicit rule:

yk+1 = yk + hf(xk+1, yk+1)

It is an implicit rule because the value yk+1 is not expressed explicitly. We need to

solve it using a method for nonlinear equation. In the following, I use the uniroot()

function:

myODE2 <- function(f, n, a, b, y0, from = 0, to = 50) {

h <- (b - a)/n

f2 <- function(y, y1, x, h) y - y1 - h * f(x, y)

x <- a + h * (0:n)

y <- y0

for (i in 2:(n + 1)) y[i] <- uniroot(f2, c(from, to), y1 = y[i - 1], x = x[i],

h = h)$root

return(list(x = x, y = y, h = h))

}

0 1 2 3 4
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The Implicit Euler's Method

x

y(
x)

True
h = 0.4
h = 0.2
h = 0.133

The method now undershoots the solution because it used the slope at the end

points. Both methods converge linearly to the solution. In other words, the error is of

order h. We can to better by using better integration rules.
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8.2.3 Trapezoid Rule

Lets first rewrite the result from the fundamental theorem of calculus:

y(xk+1)− y(xk) =

∫ xk+1

xk

f(x, y(x))dx.

The right hand side can be computed by the Trapezoid method, which gives:

yk+1 = yk +
h

2

(
f(xk, yk) + f(xk+1, yk+1)

)
It is also an implicit method that requires us to solve a nonlinear equation, but the

error is of order h2 which is better than any Euler’s Methods.

myODE3 <- function(f, n, a, b, y0, from = 0, to = 50) {

h <- (b - a)/n

f2 <- function(y, y1, x1, x, h) y - y1 - h * (f(x, y) + f(x1, y1))/2

x <- a + h * (0:n)

y <- y0

for (i in 2:(n + 1)) y[i] <- uniroot(f2, c(from, to), y1 = y[i - 1], x1 = x[i -

1], x = x[i], h = h)$root

return(list(x = x, y = y, h = h))

}

0 1 2 3 4

10
12

14
16

18
20

The Trapeziod Rule

x

y(
x)

True
h = 0.4
h = 0.2
h = 0.133

The method work nicely even for small h (h = .4 corresponds to 10 points). This

method, however, may not be convenient in some cases in which the nonlinear equation

is hard to solve. The next method is explicit and can do even better than the Trapezoid

rule.
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8.2.4 Runge-Kutta Method

There is more than one version of this method. The idea is similar to the Trapezoid

rule because it computes f(x, y) at more than one points in order to get a better

approximation. The second-order Runge-Kutta (RK2) is like the Trapezoid, but the

Euler’s Yk+1 is used instead. Its error is also O(h2). Since it only depends on known

values, we don’t need to solve a nonlinear equation:

yk+1 = yk +
h

2

(
f(xk, yk) + f(xk+1, Y

E
k+1)

)
,

where Y E
k+1 = yk + hf(xk, yk)

RK2 <- function(f, n, a, b, y0) {

h <- (b - a)/n

x <- a + h * (0:n)

y <- y0

for (i in 2:(n + 1)) {

YE = y[i - 1] + h * f(x[i - 1], y[i - 1])

y[i] <- y[i - 1] + h * (f(x[i - 1], y[i - 1]) + f(x[i], YE))/2

}

return(list(x = x, y = y, h = h))

}
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The Second−Order Runge−Kutta

x

y(
x)

True
h = 0.4
h = 0.2
h = 0.133

The fourth-order Runge-Kutta (RK4) evaluate f(x, y) at 4 points and its error is

O(h4)
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RK4 <- function(f, n, a, b, y0) {

h <- (b - a)/n

x <- a + h * (0:n)

y <- y0

for (i in 2:(n + 1)) {

F1 <- f(x[i - 1], y[i - 1])

F2 <- f(x[i - 1] + h/2, y[i - 1] + h * F1/2)

F3 <- f(x[i - 1] + h/2, y[i - 1] + h * F2/2)

F4 <- f(x[i], y[i - 1] + h * F3)

y[i] <- y[i - 1] + h * (F1 + 2 * F2 + 2 * F3 + F4)/6

}

return(list(x = x, y = y, h = h))

}
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The Fourth−Order Runge−Kutta

x

y(
x)

True
RK4 (h=0.8)
RK2 (h=0.8)
RK4 (h=0.27)

Lets now compare few methods to the Solow model. We assume the

following values: s = 0.2, δ = 0.1, α = 0.25, and k(0) = 0.5.
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8.2.5 Example: Signaling Equilibrium

This example comes from Judd, page 347. It is a simplified version of a model developed

by [Spence 1974]. It is an initial value problem with closed form solution. We can use

it to compare the performance of the different methods.

In the model, individuals of type n ∈ [nm, nM ] (a measure of his ability) choose

the level of education y. The cost of education is C(y, n) with Cy > 0 and Cn < 0.

Employers only observe y (the signal), which implies that wage, w(y), only depends on

it. Individuals maximize their net income w(y) − C(y, n), which implies that w′(y) =

Cy(y, n). Output produced by each individual, S(y, n), depends on his type and level

of education, with Sy > 0, and Sn > 0. We assume a competitive equilibrium, which

implies that w(y) = S(y, n).

Because each type will choose different level of education, we have y = y(n). To

follow the book and the article, we will substitute the inverse of the optimal level of

education n = n(y) in the equilibrium condition in order to obtain the differential

equation. The equilibrium conditions become:

w′(y) = Cy(y, n(y))

w(y) = S(y, n(y))

If we differentiate the second equation and substitutes the first in it, we obtain the

Equation 10.4.1 of Judd:

n′(y) =
Cy(y, n(y))− Sy(y, n(y))

Sn(y, n(y))
(8.4)
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For the initial value, we assume that the individual with the lowest ability nm chooses

the level of education ym that is socially optimal. It satisfies Sy(ym, nm) = Cy(ym, nm).

For the numerical example, we assume that S(y, n) = nyα, C(y, n) = y/n, nm = 0.1,

α = 0.25, and ym = 0.00034. The closed form solution is given by Equation 10.4.5 of

Judd. The following solves the different equation 8.4.

Spence <- function(y, alpha = 0.25, nm = 0.1) {

ym <- (nm^2 * alpha)^(1/(1 - alpha))

D <- (nm/ym^(-alpha))^2 * (1 + alpha)/2 - ym^(1 + alpha)

y^(-alpha) * sqrt(2 * (y^(1 + alpha) + D)/(1 + alpha))

}

dN <- function(y, n, alpha = 0.25) (1/n - alpha * n * y^(alpha - 1))/y^alpha

> nm <- 0.1

> alpha <- 0.25

> b <- 1

> N <- c(5,10,20,40,100)

> ym <- (nm^2*alpha)^(1/(1-alpha))

> curve(Spence,ym,b,xlab="y",ylab="n(y)",main=

+ "Spence(74) model",n=2000)

> for(i in 1:length(N))

+ {

+ s <- RK4(dN,N[i],ym,b,nm)

+ lines(s$x,s$y,col=(i+1)) }

> l <- paste("RK4 (h=",round((b-ym)/N,3),")",sep="")

> legend("bottomright",c("True",l),col=1:(length(N)+1),lty=1)
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We see that the choice of h matters most when the second derivative of the solution

is the highest. We can also get the solution for w(y), using the equilibrium condition.
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8.3 Boundary values and the Shooting Method

Consider the life-cycle model in which consumers maximize the discounted future util-

ity:

max
c

∫ T

0
e−rtu(c(t))dt
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subject to:

Ȧ = f(A(t)) + w(t)− c(t),

and A(0) = A(T ) = 0. The Hamiltonian is:

H = u(c) + λ(f(A) + w − c).

The solution implies the first order condition

u′(c) = λ

the constraint:

Ȧ = f(A(t)) + w(t)− c(t),

and the costate equation:

λ̇ = ρλ− λf ′(A)

If we substitute λ by u′(c), and λ̇ by u′′(c)ċ in the last equation, we obtain the following

system of differential equations:

Ȧ =f(A) + w − c

ċ =
u′(c)

u′′(c)
(ρ− f ′(A))

(8.5)

with initial value A(0) = 0, and boundary condition A(T ) = 0.

This kind of problems is quite different from initial value problems because we need

to restrict the last value without knowing the solution. The Shooting method is a

trial-and-error approach. In the above problem, A(T ), given A(0) = 0, depends of the

initial values c(0). The method consists in guessing c(0), and modifying it until A(T )

is sufficiently close to 0.

First, we need to adapt the RK4() function for system of equations. In the following,

f is a function (x, y) which returns an n× 1 vector, x ∈ [a, b], and y ∈ Rn.

RK4 <- function(f, n, a, b, y0, ...) {

h <- (b - a)/n

x <- a + h * (0:n)

y <- matrix(y0, nrow = 1)

for (i in 2:(n + 1)) {

F1 <- f(x[i - 1], y[i - 1, ], ...)

F2 <- f(x[i - 1] + h/2, y[i - 1, ] + h * F1/2, ...)

F3 <- f(x[i - 1] + h/2, y[i - 1, ] + h * F2/2, ...)

F4 <- f(x[i], y[i - 1, ] + h * F3, ...)

yi <- y[i - 1, ] + h * (F1 + 2 * F2 + 2 * F3 + F4)/6

y <- rbind(y, yi)
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}

return(list(x = x, y = y, h = h))

}

For the numerical exercise, we assume that u(c) = c1+γ/(1+γ), w(t) = 1 if M ≤ t ≤ R
and 0 otherwise, ρ = 0.04, f(A) = rA with r = 0.10, γ = −0.5, T = 55, M = 10, and

R = 40. The following function returns the right hand side of the system 8.5, with

y = {c, A}′:

LifeCycle <- function(x, y, rho = 0.04, r = 0.1, gamma = -2, M = 10, R = 40) {

w <- (x <= R) * (x >= M)

y1 <- r * y[2] + w - y[1]

y2 <- (rho - r) * y[1]/gamma

c(y2, y1)

}

Lets first start with c(0) = 0.3, and c(0) = 0.2:

> h <- .01

> c0 <- c(.2,.3)

> n <- floor(55/h)

> s <- RK4(LifeCycle,n,0,55,c(c0[1],0))

> s2 <- RK4(LifeCycle,n,0,55,c(c0[2],0))
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The end

point of the solution path should be 0. For c(0) = 0.2, A(55) > 0, and for c(0) = 0.3,

A < 0. The find the right c(0) we can use a bisection method. The following is a

function that can be used in the Bisection() function of Chapter 5:
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> f <- function(c0)

+ {

+ n <- floor(55/0.01)

+ s <- RK4(LifeCycle,n,0,55,c(c0,0))

+ return(s$y[n+1,2])

+ }

> res <- Bisection(f,.2,.3)

> res

Method: Bisection

Message: Converged after 20 iterations

The solution is: 0.2500609 , and f(x) is 3.074027e-05

Precision: 9.536743e-08

We can then use that value to plot the solution.

> s <- RK4(LifeCycle,n,0,55,c(res$sol,0))

> plot(s$y[,2],s$y[,1],type="l",xlab="A",ylab="C",

+ main="Life Cycle Model: The solution")

> abline(v=0)

> points(c(0,0),c(res$sol,s$y[n+1,1]),pch=c(21,21),bg=c(1,1))
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8.3.1 Infinite Horizon Models

Consider the following model:

max
c

∫ ∞
0

e−ρtu(c)dt

subject to k̇ = f(k) − c, and k(0) = k0. We don’t have explicit boundary conditions,

but we have to assume that limt→∞ |k(t)| <∞ (which also implies the convergence of

|c(t)|). We know for the above model that the only possible path is the one that will

make k(t) and c(t) converge to their respective steady state values, k∗ and c∗. The first

method is to forward shooting and it consists in choosing the path that leads as close

as possible to the steady state. The following algorithm is the one proposed on page

357 of Judd, and it is for the case in which k0 < k∗. We also use the specification given

on page 359.

growth <- function(x, y) {

y1 <- -(0.05 - 0.05 * y[2]^(-0.75)) * y[1]/2

y2 <- 0.2 * y[2]^0.25 - y[1]

c(y1, y2)

}

RK4G <- function(f, h, y0, maxit = 1000) {

#The difference: it stops when either df/dy<0

x <- 0

y <- matrix(y0, nrow = 1)

i <- 1

while (TRUE) {

F1 <- f(x[i], y[i, ])

F2 <- f(x[i] + h/2, y[i, ] + h * F1/2)

F3 <- f(x[i] + h/2, y[i, ] + h * F2/2)

F4 <- f(x[i] + h, y[i, ] + h * F3)

y1 <- y[i, ] + h * (F1 + 2 * F2 + 2 * F3 + F4)/6

x <- c(x, x[i] + h)

y <- rbind(y, y1)

if (any(f(x[i + 1], y1) < 0))

break

if (i > maxit) {

warning("maxit reached")

break

}

i <- i + 1
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}

return(list(T = i, y = y, x = x))

}

fShooting <- function(f, k0, h = 0.01, eps = 1e-07, maxit = 20) {

cL <- 0

cH <- 0.2 * k0^0.25

cSteady <- 0.2

i <- 1

while (TRUE) {

c0 <- (cL + cH)/2

res <- RK4G(f, h, c(c0, k0), maxit = 2000)

T <- res$T + 1

if (abs(res$y[T, 1] - cSteady) < eps)

break

if (i > maxit) {

warning("Maxit reached")

break

}

ydot <- f(res$x[T], res$y[T, ])

if (ydot[1] < 0)

cL <- c0 else cH <- c0

i <- i + 1

}

return(res)

}

> res <- fShooting(growth,.2,eps=1e-3,maxit=1000,h=.1)

> k <- res$y[,2]

> c <- res$y[,1]

> curve(.2*x^.25,0,1.50,xlab="K(t)",ylab="C(t)",n=1000,xlim=c(-.2,1.8),

+ main="Infinite-Horizon problem with Forward Shooting",lwd=2)

> abline(v=1,lwd=2,col=2)

> text(1.075,.02,expression(dot(C)==0),col=2)

> text(1.6,.22,expression(dot(K)==0),col=1)

> lines(k,c,col=4,lwd=4)

> text(k[20],c[20],"Stable Path",col=4,pos=4)

> points(k[1],c[1],pch=21,bg=4)

> text(k[1]+.05,c[1],paste("(",round(k[1],3),", ",round(c[1],4),")",sep=""),pos=1,col=4)
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This method is time consuming and hard to perform because a slight deviation from

the stable path leads to the unstable one. Another way is to do the reverse shooting

on −f(x, y). The idea is to transform the stable path into the unstable one. From the

phase diagram, a small deviation from the steady state leads to the unstable path. We

can therefore use that property to generate the solution.

revGrowth <- function(x, y) {

y1 <- -(0.05 - 0.05 * y[2]^(-0.75)) * y[1]/2

y2 <- 0.2 * y[2]^0.25 - y[1]

-c(y1, y2)

}

> res1 <- RK4(revGrowth,1000,0,300,c(.2,1.01))

> res2 <- RK4(revGrowth,1000,0,300,c(.2,.99))

> curve(.2*x^.25,0,1.50,xlab="K(t)",ylab="C(t)",n=1000,xlim=c(-.2,2),ylim=c(0,.4),

+ main="Infinite-Horizon problem with Reverse Shooting",lwd=2)

> abline(v=1,lwd=2,col=2)

> text(1.075,.02,expression(dot(C)==0),col=2)

> text(1.6,.22,expression(dot(K)==0),col=1)

> # differential equations (ODE), partial differential equations

>

> points(k[1],c[1],pch=21,bg=4)

> text(k[1]+.05,c[1],paste("(",round(k[1],3),", ",round(c[1],4),")",sep=""),pos=1,col=4)

> lines(res1$y[,2],res1$y[,1],col=3,lwd=2)

> lines(res2$y[,2],res2$y[,1],col=3,lwd=2)
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We could then use those points to obtain c(0) for different k(0). The interpolation

method is a nice way to do it:

> # x is K(0) and y is C(0)

> unlist(spline(res2$y[,2],res2$y[,1],xout=.2))

x y

0.2000000 0.1027205

> unlist(spline(res2$y[,2],res2$y[,1],xout=.5))

x y

0.5000000 0.1477963

> unlist(spline(res1$y[,2],res1$y[,1],xout=1.5))

x y

1.5000000 0.2417928

Another way to apply the reverse shooting method is to solve directly for the stable

path c(t) = C(k(t)). If we differentiate the identity, we get C ′(k) = ċ/k̇, starting at

the steady states C(K∗) = c∗, which implies:

C ′(k) =
u′(C)

u′′(C)

ρ− f ′(k)

f(k)− C
(8.6)

with C ′(k∗) given by Equation 10.7.7 of Judd.



8.3. Boundary values and the Shooting Method 175

Exercise 8.1. Replicate Table 10.2 of Judd, using the reverse shooting method applied

to the differential equation 8.6

Exercise 8.2. Answer Exercises 2, 5, and 6 of Judd (Chapter 10)

We conclude the section with an example of reverse shooting for multidimensional

problems. We consider the growth model with 3 sectors presented in exercise 7, with

u(c) = log(c), ρ = 0.05, α1 = 0.25, α2 = 0.35, α3 = 0.4, γ1 = 10, γ2 = 50, γ3 = 100,

and ki(0) = 0.5 for i = 1, 2, 3. First, we need to compute the steady state. I don’t want

to compute it manually, so I will use a method from Chapter 5. First, the solution

implies the following differential equations.

λ̇i = ρλi −
ρkαi−1i

C
,

k̇i = Ii,

for i = 1, 2, 3 with

λi =
1 + 2γiIi

C

and

C = ρ

(
kα1
1

α1
+
kα2
2

α2
+
kα3
3

α3

)
−
(
I1 + I2 + I3 + γ1I

2
1 + γ2I

2
2 + γ3I

2
3

)
The steady state values are k∗i = 1, I∗i = 0, and λ∗i = 1/C. There is two approaches

to solve the problem. First, we can follow the procedure on page 361 of Judd, and

solve for Ii(t) using the maximum principle (the first order conditions), and substitute

the solution into the differential equations. However, there is no closed form solution

Ii(t). We can solve it using a nonlinear solver but it may be unstable because there are

multiple solutions. The following follows that method:

MGrowth <- function(x, y) {

alpha <- c(0.25, 0.35, 0.4)

rho = 0.05

gamma = c(10, 50, 100)

I0 <- c(0, 0, 0)

I <- function(I, K, Lambda) {

C <- sum(rho * K^alpha/alpha) - sum(I) - sum(gamma * I^2)

C * Lambda - 1 - 2 * gamma * I

}

Iv <- Broyden(I, I0, K = y[1:3], Lambda = y[4:6])$sol

C <- sum(rho * y[1:3]^alpha/alpha) - sum(Iv) - sum(gamma * Iv^2)

dy2 <- rho * y[4:6] - rho * y[1:3]^(alpha - 1)/C

return(-c(Iv, dy2))

}
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> SteadyC <- sum(rho/alpha)

> SteadyK <- c(1,1,1)

> SteadyL <- rep(1/SteadyC,3)

> y <- c(SteadyK*1.001,SteadyL)

> res1 <- RK4(MGrowth, n, 0, T, y)

I am not showing the result because it is not satisfying. In the second method, I

substitute the λi and λ̇i by Ii and İi. We replace λi by

λi =
1 + 2γiIi

C

and λ̇i by

λ̇i = −1 + 2γiIi
C2

Ċ +
2γiİi
C

Because dotC depends on all k̇i and İi, we need to solve a linear system of equations

to obtain the 6 differential equations.

MGrowth2 <- function(x, y) {

alpha <- c(0.25, 0.35, 0.4)

rho = 0.05

gamma = c(10, 50, 100)

K <- y[1:3]

I <- y[4:6]

C <- sum(rho * y[1:3]^alpha/alpha) - sum(I) - sum(gamma * I^2)

Ai <- -1/C^2 * (1 + 2 * gamma * I)

Bi <- 2 * gamma/C

Ei <- rho * (1 + 2 * gamma * I)/C - rho * K^(alpha - 1)/C

A <- c(rho * K^(alpha - 1), -(1 + 2 * gamma * I))

W <- Ai %o% A

diag(W[1:3, 4:6]) <- diag(W[1:3, 4:6]) + Bi

W <- rbind(W, cbind(diag(3), 0, 0, 0))

-solve(W, c(Ei, I))

}

> T <- 73

> n <- 400

> SteadyK <- c(1,1,1)

> y <- c(SteadyK*1.01,rep(-0.01,3))

> res <- RK4(MGrowth2, n, 0, T, y)

> y <- c(SteadyK*.99,rep(0.01,3))

> res1 <- RK4(MGrowth2, n, 0, T, y)
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> Y <- rbind(c(SteadyK,0,0,0),res$y)

> Y <- rbind(res1$y[(n+1):1,],Y)

> plot(Y[,1],Y[,4],type="l",main="Multifactor Growth Model",

+ xlab=expression(K[1](t)),ylab=expression(I[1](t)))

> points(SteadyK[1],0,pch=21,bg=1)

> text(SteadyK[1],0,"Steady state",bg=1,pos=1)

> Y <- rbind(c(SteadyK,0,0,0),res$y[-(1:(n/2)),])

> Y <- rbind(res1$y[(n+1):(n/2+1),],Y)

> lines(Y[,1],Y[,4],col=4,lty=2,lwd=2)
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> Y <- rbind(c(SteadyK,0,0,0),res$y)

> Y <- rbind(res1$y[(n+1):1,],Y)

> plot(Y[,2],Y[,5],type="l",main="Multifactor Growth Model",

+ xlab=expression(K[2](t)),ylab=expression(I[2](t)))

> points(SteadyK[1],0,pch=21,bg=1)

> text(SteadyK[1],0,"Steady state",bg=1,pos=1)

> Y <- rbind(c(SteadyK,0,0,0),res$y[-(1:(n/2)),])

> Y <- rbind(res1$y[(n+1):(n/2+1),],Y)

> lines(Y[,2],Y[,5],col=4,lty=2,lwd=2)
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8.4 Projection Methods (incomplete)

For now, I just give the idea behind the projection method. We don’t have time

this semester to go into more details. Suppose we want to solve y′(t) = f(t, y) with

y(0) = y0. The idea is to approximate the y(t) by another function φ(t) with the

property φ(0) = y0, for an initial value problem, and φ(T ) = yT , for a boundary value

problem. Consider the example given on page 370 of Judd, y′(t) = y(x), with t ∈ [0, 3],

and y(0) = 1. The solution is et. Consider the following approximation:

φ(t; a) = 1 +
n∑
i=1

ait
i

then, the differential equation implies:

n∑
i=1

iait
i−1 ≈ 1 +

n∑
i=1

ait
i

or

R(x; a) = −1 +

n∑
i=1

ai(it
i−1 − ti) ≈ 0,

where R(x; a) is called the residual function. We want to choose a in such a way that

R(x; a) is as close to 0 as possible for all x. The simpler approach is to use the least

square method, and minimize
∫ 3
0 R(x; a)dx. Suppose n = 3, 4, then:
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R_LS <- function(a, from, to) {

Rfct <- function(x) {

n <- length(a)

R <- -1

for (i in 1:n) R <- R + a[i] * (i * x^(i - 1) - x^i)

return(R^2)

}

integrate(Rfct, from, to)$value

}

We can get the coefficients ai’s by minimizing R LS() (notice that the solution can be

obtained by solving a linear system of equations).

> res <- optim(c(0,0,0),R_LS,from=0,to=3,method="BFGS")

> res$par

[1] 1.2903209 -0.8064510 0.6586022

> f <- function(x)

+ apply(as.matrix(x),1,function(x) 1+sum(res$par*x^(1:length(res$par))))

> Q <- curve(f,0,3,main="Polynomial approximation of Y(t) in Y'-Y=0")

> res <- optim(c(0,0,0,0),R_LS,from=0,to=3,method="BFGS")

> res$par

[1] 0.7701986 1.1310133 -0.3906775 0.2090132

> lines(Q$x,f(Q$x),col=2)

> lines(Q$x,exp(Q$x),col=3)

> legend("topleft",c("Estimated (n=3)", "Estimated (n=4)", "True"),col=1:3,lty=1)
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The Subdomain method finds the n ai’s that satisfy
∫
Di
R(x; a) = 0 for the n

intervals Di.

R_SD <- function(a, from, to, D) {

Rfct <- function(x) {

n <- length(a)

R <- -1

for (i in 1:n) R <- R + a[i] * (i * x^(i - 1) - x^i)

return(R)

}

from <- seq(from, to, length = (D + 1))

r <- sapply(1:D, function(i) integrate(Rfct, from[i], from[i + 1])$value)

}

> res <- Broyden(R_SD,c(0,0,0),from=0,to=3,D=3)

> res$sol # see table 11.1 of Judd

[1] 2.5 -1.5 1.0

[1] 2.5 -1.5 1.0
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The method of collocation sets R(xi, a) = 0 for n points xi. The Uniform Colloca-

tion set the points uniformly between [0,3], and the Chebyshev Collocation is based on

the Chebyshev nodes.

CollCheby <- function() {

x <- 3/2 * c(cos(5 * pi/6) + 1, 1, cos(pi/6) + 1)

A <- vector()

for (i in 1:3) {

w <- (1:3) * x[i]^(0:2) - x[i]^(1:3)

A <- rbind(A, w)

}

return(solve(A, rep(1, 3)))

}

> a <- CollCheby()

> a

[1] 1.6923077 -1.2307692 0.8205128
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Exercise 8.3. Reproduce Table 11.2 of Judd

I conclude the section with the life cycle model. The following functions solve the

problem using the Chebyshev polynomial and the Collocation method for obtaining the

coefficients (The function are written for t ∈ [a, b] with A(a) = A(b) = 0 as boundary

condition. Also, we assume that w(t) = 0.5 + t/10 − 4(t/50)2, and u(c) = cγ+1/γ + 1

(see page 389 of Judd):

Cheby <- function(t, i, a, b) cos(i * acos(2 * t/(b - a) - 1))

DCheby <- function(t, i, a, b) sin(i * acos(2 * t/(b - a) - 1)) * (i *

(2/(b - a)/sqrt(1 - (2 * t/(b - a) - 1)^2)))

A <- function(t, aVec, a, b) {

# a[1] = a_0 and a[n] = a_(n-1)

# valid for c as well

n <- length(aVec)

A <- rep(0, length(t))

for (i in 1:n) A <- A + aVec[i] * Cheby(t, (i - 1), a, b)

A

}

Adot <- function(t, aVec, a, b) {

# a[1] = a_0 and a[n] = a_(n-1)

# valid for c as well

n <- length(aVec)
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A <- rep(0, length(t))

for (i in 1:n) A <- A + aVec[i] * DCheby(t, (i - 1), a, b)

A

}

getSol <- function(n, a, b) {

w <- function(t) 0.5 + t/10 - 4 * (t/50)^2

t <- gauss.quad(n - 1, kind = "chebyshev1")$node * (b - a)/2 + (b - a)/2

f <- function(theta) {

aVec <- theta[1:n]

cVec <- theta[(n + 1):(2 * n)]

R1 <- Adot(t, cVec, a, b) - 0.025 * A(t, cVec, a, b)

R2 <- Adot(t, aVec, a, b) - 0.1 * A(t, aVec, a, b) - w(t) + A(t, cVec, a,

b)

R3 <- A(a, aVec, a, b)

R4 <- A(b, aVec, a, b)

c(R1, R2, R3, R4)

}

res <- Broyden(f, rep(0, 2 * n), maxit = 300, eps = 1e-09)

t <- seq(a, b, length = 200)

At <- A(t, res$sol[1:n], a, b)

Ct <- A(t, res$sol[(n + 1):(2 * n)], a, b)

list(Coef = res, At = At, Ct = Ct, t = t)

}

> library(statmod)

> res <- getSol(10,0,50)

> plot(res$Ct,res$At,type="l",main="Life Cycle: Projection method",

+ ylab="A(t)",xlab="C(t)")

> points(res$Ct[c(1,length(res$t))],res$At[c(1,length(res$t))],

+ pch=21,bg=1)

> abline(h=0)
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See how fast is it compare to the shooting method.

Exercise 8.4. Solve the growth model on page 392 of Judd. You must obtain C(k) di-

rectly by approximating C(k) using Chebyshev polynomials and the Collocation Method.

8.5 Partial Differential Equation: The Heat Equation

Let θ(x, t) be a function that returns the temperature of a metal bar at time t ∈ [0,∞],

and location x. If we suppose that the length of the bar is 1, then x ∈ [0, 1], where

0 and 1 are the two extremities. The partial differential equation that represents how

temperature is distributed along the bar is:

θt − θxx = 0

In the standard heat equation, we assume that something cool down the temperature

at both extremities. We therefore have the boundary condition θ(0, t) = θ(1, t) = 0. It

says that the change of temperature is proportional to the speed at which temperature

moves from one point to another on the bar. Why would an economist cares about the

heat equation? In some applications, the differential equation can be written as the

heat equation. It is the case of the problem required to derive the Black and Scholes

formula.

If we assume that θ(x, 0) = sin(πx), the solution is θ(x, t) = e−π
2t sin(πx).
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For a given t, we can use the following approximation:

θ(x, t) ≈ θ̂(x, t) = sin(πx) +
n∑
i=1

ai(t)(x− xi)

The approximation satisfies the condition θ(x, 0) = sin(πx) if ai(0) = 0. By con-

struction, the condition θ(0, t) = θ(1, t) = 0 is satisfied. The unknown coefficients are

functions of t. If we apply the heat equation to the approximation, and use projec-

tion conditions, we obtain a differential equation for ai(t) with the initial conditions

ai(0) = 0. We can use any method to solve initial value problems or use another projec-

tion method. Let, for example, t ∈ [0, 1]. Since we need ai(0) = 0, we can approximate

the functions by:

ai(t) =

m∑
j=1

aijt
j ,

which gives:

θ̂(x, t) = sin(πx) +

n∑
i=1

m∑
j=2

aij(x− xi)tj

The projection methods consists in computing the residual function R(x, t, a) and use

conditions such as Chebyshev-Collocation or Galerkin to obtain the aij . We can show

that for all cases, the problem can be written as a system of (n− 1)m linear equations

Ba = c. The problem is to find the right method and the right basis functions so that

the linear system if well-conditioned. We will instead solve it using finite difference (see

[Golub & Ortega 1992]).
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Let θki = θ(xi, tk), with i = 0, ..., n + 1, and k = 0, ...,m , then we can write the

Heat equation using finite difference as (I use the implicit Euler method because of its

stability, as shown bellow):

θk+1
i − θki
ht

=
θk+1
i+1 − 2θk+1

i + θk+1
i−1

h2x
,

where hx = ∆x, and ht = ∆t. The boundary conditions imply that θk0 = θkn+1 = 0 ∀ k,

and θ0i = sin(πxi). If we define µ as ht/h
2
x, we can write the algorithm as:

1 + 2µ −µ 0 0 · · · 0

−µ 1 + 2µ −µ 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 −µ 1 + 2µ −µ
0 · · · 0 0 −µ 1 + 2µ


θk+1 = θk,

where θk = {θk1 , ..., θkn}′. The transition matrix A is tridiagonal, which makes the

system easy to solve, and is diagonally dominant. Also, its eigenvalues are all strictly

greater than 1 which implies that the eigenvalues of A−1 are strictly less than one. The

iterative procedure is therefore convergent. To see that, we can write A as I + µB,

where B is also tridiagonal, with Bii = 2 and Bi,i+1 = Bi,i−1 = −1. We can show that

the ith eigenvalue of B is 2[1 + cos(iπ/(n + 1))]. The ith eigenvalue of A is therefore

1 + 2µ[1 + cos(iπ/(n + 1))] > 1. The explicit Euler method does not possess this

property. The following function computes the solution using this method:

Heat1 <- function(n, m, x = NULL, t = NULL) {

# Implicit Euler

if (is.null(t))

t <- seq(0, 1, len = m) else m <- length(t)

if (is.null(x))

x <- seq(0, 1, len = n + 2) else n <- length(x) - 2

a <- (t[2] - t[1])/(x[2] - x[1])^2

A <- matrix(0, n, n)

diag(A) <- 1 + 2 * a

diag(A[-1, -n]) <- -a

diag(A[-n, -1]) <- -a

theta <- matrix(sin(pi * x[-c(1, n + 2)]), ncol = 1)

for (i in 2:m) theta <- cbind(theta, solve(A, theta[, (i - 1)]))

return(list(Theta = rbind(0, theta, 0), t = t, x = x))

}
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We can then solve the problem quickly for all tk ∈ [0, 1] and xi ∈ [0, 1]:

> library(lattice)

> res <- Heat1(50,50)

> p <- expand.grid(res$x,res$t[1:20])

> t <- p$Var2

> x <- p$Var1

> theta <- res$Theta

> wireframe(c(theta[,1:20])~t*x,zlab=expression(theta(x,t)),main="Solution of the Heat Equation",

+ scales = list(arrows = FALSE),

+ drape = TRUE, colorkey = TRUE)
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Before comparing the method with the true solution, we will look at an improve

version of the above method. We can use the trapezoid rule:

θk+1
i − θki
ht

=
θki+1 − 2θki + θki−1 + θk+1

i+1 − 2θk+1
i + θk+1

i−1
2h2x

,

which implies the following system:

1 + µ −µ/2 0 0 · · · 0

−µ/2 1 + µ −µ/2 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 −µ/2 1 + µ −µ/2
0 · · · 0 0 −µ/2 1 + µ


θk+1 =



1− µ µ/2 0 0 · · · 0

µ/2 1− µ µ/2 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . .

. . .
. . .

. . . 0

0 · · · 0 µ/2 1− µ µ/2

0 · · · 0 0 µ/2 1− µ


θk
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The iterative scheme can be written as θk+1 = A−1Bθk = Dθk. We can also show the

the eigenvalues of D are strictly less than 1. The following figure compare the methods:

We can compare θ(x, t) for a given t:

> res1 <- Heat1(15,15)

> res2 <- Heat2(15,15)

> t <- res1$t[3]

> f <- function(x)

+ exp(-pi^2*t)*sin(pi*x)

> ylim=c(0,max(c(res1$Thet[,3],res2$Thet[,3])))

> Q <- curve(f,0,1,main="Solution of the Heat equation",xlab="x",ylab="Temp",ylim=ylim)

> lines(res1$x,res1$Theta[,3],col=2)

> lines(res2$x,res2$Theta[,3],col=3)

> legend("topright",c("True","Euler","Trapezoid"),col=1:3,lty=1)
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or for a given x:

> f2 <- function(t)

+ exp(-pi^2*t)*sin(pi*x)

> x <- res1$x[3]

> Q <- curve(f2,0,1,main="Solution of the Heat equation",xlab="t",ylab="Temp")

> lines(res1$t,res1$Theta[3,],col=2)

> lines(res2$t,res2$Theta[3,],col=3)

> legend("topright",c("True","Euler","Trapezoid"),col=1:3,lty=1)
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Exercise 8.5. Write a function that solve the Heat equation by using the Trapezoid

rule. In a table, compare the error for different m and n.

8.5.1 Black and Scholes and the Heat Equation

I only cover the theory briefly. For more details, see [Hull 2011]. We consider an

European Call option. The exercise price is K, the price of the underlying asset if S,

and the expiration date is T . The value of such options at time t is V (S, t). We want

to derive its relation with time and the price of the underlying stock. In the Black and

Scholes’ formula, we assume that the stock price follows a geometric Brownian motion:

dS = Sµdt+ SσdW

and that we can construct a portfolio in which we go short one option and long dV/dS

of the underlying asset. The value of this portfolio is Π = −V + S(dV/dS) and the

return is [−∆V + (dV/dS)∆S]/Π. We can show that the portfolio is risk free, which

implies that its return must be equal to the risk-free rate r. By Ito’s Lemma, we have:

dV =

(
µS

∂V

∂S
+
∂V

∂t
+
σ2S2

2

∂2V

∂S2

)
dt+ σS

∂V

∂S
dW

By substituting dV and dS in ∆Π, we see that dW vanishes which implies the absence

of risk. Using rΠdt = dΠ with the above expression for Π and ∆Π, we get the partial

differential equation of Black and Scholes.

∂V

∂t
+
σ2S2

2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0
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with the condition: V (S, T ) = (S − K)+, V (0, t) = 0 and V (S, t) converges to S as

S goes to infinity. We can rewrite the partial differential equation as θt = θxx by the

appropriate change of variables. Let x = log(S/K), ν = V/K, and τ = (T − t)σ2/2.

Then, we can write:
∂ν

∂τ
=
∂2ν

∂x2
+ (k1 − 1)

∂ν

∂x
− k1ν

with ν(x, 0) = (ex − 1)+, ν(−∞, τ) = 0 and ν(x, τ) ≈ S/K for large x. Let θ(x, τ) =

e−(αx+βτ)ν, with α = (1 − k1)/2, and β = −(k1 + 1)2/4, then the above equation can

be written as:
∂θ

∂t
=
∂2θ

∂x2

Exercise 8.6. Consider an European Call option with exercise price K, expiration date

T . The price of the underlying stock follows the process dS = Sµdt + SσdW . Using

the method to solve the Heat Equation, write a function that computes the value of the

option V (t, S). Test it with different values of K, T , σ, and µ. Compare your solution

to the true formula. (suppose r = 0.01)

8.6 R packages for differential equations

Here is a list of existing packages:

> bvpSolve #Solvers for boundary value problems of ODEs

> ddesolve #Solver for Delay Differential Equations

> deSolve #General solvers for initial value problems of ordinary

> # differential equations (ODE), partial differential equations

> # (PDE), differential algebraic equations (DAE), and delay

> # differential equations (DDE)

> deTestSet # Testset for differential equations

> odesolve # Solvers for Ordinary Differential Equations

> PBSddesolve # Solver for Delay Differential Equations

> rootSolve # Root finding, equilibrium and steady-state analysis of ODEs

> sde # Simulation and Inference for Stochastic Differential Equations

> Sim.DiffProc # Simulation of diffusion processes

> simecol # Simulation of ecological and other dynamic systems

I am not going to explain how these packages work. The manuals are detailed

enough. Here is one example for boundary value problems:

> library(bvpSolve)

> LifeCycle <- function(x,y,parms)

+ {
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+ rho<-0.04

+ r <- 0.10

+ gamma <- -2

+ M <- 10

+ R <- 40

+ w <- (x<=R)*(x>=M)

+ y1 <- r*y[2]+w-y[1]

+ y2 <- (rho-r)*y[1]/gamma

+ list(c(y2,y1))

+ }

> init <- c(C=NA,A=0)

> end <- c(C=NA,A=0)

> sol <- bvpshoot(yini = init, x = seq(0, 55, by = 0.01),

+ func = LifeCycle, yend = end,guess=.2)

> plot(sol,which="A")
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And for initial value problem:

> library(deSolve)

> MGrowth3 <- function(x,y,parms)

+ {

+ res <- MGrowth2(x,y)

+ list(res)}

> y <- c(K=SteadyK*1.01,I=rep(-0.01,3))

> sol <- rk4(y,MGrowth3,times=seq(0,73,length=400),parms=NULL)

> plot(sol)
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Appendix A

Solution to some Problems

A.1 Chapter 1

Exercise 1.2. In order to do the exercise, you will need to load the data file ”Pri-

ceIndex.rda”, in which you’ll find seven vectors of price index: all, Car, Clothing,

Electricity, Food, NatGas and Gasoline. All vectors are monthly time series going from

January 1949 to September 2011. This exercise makes you use what we have covered

above and more. You may need to use Google, help() or help.search(). That is where

the fun begins

1. Collect the data in a matrix of class ”ts” with the correct starting date and fre-

quency. You can then plot the data and compare the inflation of different items.

> load("../../data/PriceIndex.rda")

> Nvar <- objects() # I only have the loaded variables in the workspace

> CPI <- get(Nvar[1]) # get the variable from its name

> for (i in 2:length(Nvar))

+ CPI <- cbind(CPI,get(Nvar[i]))

> colnames(CPI) <- Nvar

> CPI <- ts(CPI,freq=12,start=c(1949,1))

> INF <- diff(CPI)/lag(CPI,-1)

> colnames(INF) <- colnames(CPI)

> plot(INF, main="Inflation using different price indices")
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2. Build a table in which you have for each item, the average annual inflation, its

standard deviation, its kurtosis and its skewness.

To compute annual inflation I first aggregate CPI using the average method (CPI

in a given year is the average price during that period)

> ACPI <- aggregate(CPI,nfrequency=1)

> AINF <- diff(ACPI)/lag(ACPI,-1)

> colnames(AINF) <- colnames(CPI)

> S1 <- colMeans(AINF)

> S2 <- apply(AINF,2,sd)

> Momfct <- function(x, mom)

+ {

+ s <- sd(x)

+ mean((x-mean(x))^mom)/s^mom

+ }

> S3 <- apply(AINF,2,Momfct,mom=3)

> S4 <- apply(AINF,2,Momfct,mom=4)
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> res <- cbind(S1,S2,S3,S4)

> colnames(res) <- c("Mean","S-dev","Skewness","Kurtosis")

> rownames(res) <- colnames(CPI)

> round(res,4)

Mean S-dev Skewness Kurtosis

all 0.0382 0.0317 1.1385 3.3053

Car 0.0250 0.0439 0.3135 3.3084

Clothing 0.0238 0.0323 1.0523 3.5600

Electricity 0.0404 0.0428 1.0250 3.7015

Food 0.0406 0.0427 1.3418 4.1551

Gasoline 0.0453 0.0816 0.8823 5.5863

NatGas 0.0443 0.1008 0.6304 3.9948

3. Create a matrix of annual data from your monthly series. An annual index is

defined as the average monthly index.

Done in the previous question.

4. Using the annual series, plot on the same graph the annual inflation series of

all component of CPI and include a legend. Do you see a difference between the

different items?

> plot(AINF,plot.type="single",col=1:7)

> legend("topleft",colnames(AINF),col=1:7,lty=rep(1,7))
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Exercises 1.4 to 1.7

I use the simplest way (for me) by creating objects. Here is the new constructor for

consumers:

consumer <- function(name = NULL, par, Y = NULL, utility = c("Cobb",

"Linear", "Leontief", "Subsistence", "CES", "Linear", "Concave")) {

utility <- match.arg(utility)

U <- get(utility)

if (!U(par)$good)

stop("The vector of parameters does not fit the selected utility function")

cons <- list(name = name, par = par, Y = Y, utility = U,

nameU = utility)

class(cons) <- "consumer"

return(cons)

}

I then create each utility function (notice what the function returns):
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Cobb <- function(par) {

names(par) <- NULL

good = TRUE

if (length(par) != 2)

good <- FALSE

par <- c(alpha = par)

f <- expression(x1^alpha1 * x2^alpha2)

X1 <- expression(alpha1 * Y/(p1 * (alpha1 + alpha2)))

X2 <- expression(alpha2 * Y/(p2 * (alpha1 + alpha2)))

Indif <- expression(U^(1/alpha2) * x1^(-alpha1/alpha2))

fct <- paste("U = X1^", par[1], "*X2^", par[2], sep = "")

ans <- list(Uexp = f, Sol = list(X1 = X1, X2 = X2), par = par,

name = "Cobb Douglas", fct = fct, Indif = Indif, good = good)

class(ans) <- "Utility"

return(ans)

}

Leontief <- function(par) {

names(par) <- NULL

good = TRUE

if (length(par) != 2)

good <- FALSE

par <- c(alpha = par)

f <- expression(min(x1 * alpha1, x2 * alpha2))

X1 <- expression(Y/(p1 + p2 * alpha1/alpha2))

X2 <- expression(Y/(p2 + p1 * alpha2/alpha1))

Indif <- function(U, par) {

x1 <- U/par[1]

x2 <- U/par[2]

ylim <- c(0, 3 * x2)

xlim <- c(0, 3 * x1)

plot(c(x1, x1), c(x2, ylim[2]), xlab = "X1", ylab = "X2",

bty = "n", xlim = xlim, ylim = ylim, type = "l",

col = 2, lwd = 2)

lines(c(x1, xlim[2]), c(x2, x2), col = 2, lwd = 2)

}

fct <- paste("U = Min(", par[1], "*X1, ", par[2], "*X2)",

sep = "")

ans <- list(Uexp = f, Sol = list(X1 = X1, X2 = X2), par = par,

name = "Leontief", fct = fct, Indif = Indif, good = good)

class(ans) <- "Utility"
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return(ans)

}

Subsistence <- function(par) {

names(par) <- NULL

good = TRUE

if (length(par) != 4)

good <- FALSE

par <- c(alpha = par[1:2], x0 = par[3:4])

f <- expression((x1 - x01)^alpha1 * (x2 - x02)^alpha2)

X1 <- expression((alpha1 * Y + alpha2 * p1 * x01 - alpha1 *

x02 * p2)/(p1 * (alpha1 + alpha2)))

X2 <- expression((alpha2 * Y + alpha1 * p2 * x02 - alpha2 *

x01 * p1)/(p2 * (alpha1 + alpha2)))

Indif <- expression(x02 + U^(1/alpha2) * (x1 - x01)^(-alpha1/alpha2))

fct <- paste("U = (X1-", par[3], ")^", par[1], "*(X2-", par[4],

")^", par[2], sep = "")

ans <- list(Uexp = f, Sol = list(X1 = X1, X2 = X2), par = par,

name = "Subsistence", fct = fct, Indif = Indif, good = good)

class(ans) <- "Utility"

return(ans)

}

The solve function would then be easy to write:

solve.consumer <- function(cons, p, print = T) {

U <- cons$utility(cons$par)

x1 <- eval(U$Sol$X1, as.list(c(U$par, Y = cons$Y, p = p)))

x2 <- eval(U$Sol$X2, as.list(c(U$par, Y = cons$Y, p = p)))

x <- c(x1, x2)

V <- eval(U$Uexp, as.list(c(U$par, x = x)))

if (print)

cat("\n", cons$name, " will consume \n", x1, "X1 and ",

x2, "X2 (U = ", V, ")\n") else return(list(x1 = x1, x2 = x2, V = V))

}

Lets try it with 3 different consumers:

> cons1 <- consumer("Pierre",c(.2,.8),2000,"Cobb")

> cons2 <- consumer("John",c(2,4),2000,"Leontief")

> cons3 <- consumer("Bill",c(.2,.8,10,20),2000,"Subsistence")

> p <- c(15,20)

> solve(cons1,p)
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Pierre will consume

26.66667 X1 and 80 X2 (U = 64.21932 )

> solve(cons2,p)

John will consume

80 X1 and 40 X2 (U = 160 )

> solve(cons3,p)

Bill will consume

29.33333 X1 and 78 X2 (U = 46.55901 )

The plot function would look like:

plot.consumer <- function(cons, p) {

x <- solve(cons, p, print = FALSE)

U <- cons$utility(cons$par)

if (class(U$Indif) == "expression") {

if (is.null(cons$Y))

cons$Y <- eval(U$Y, as.list(c(U$par, p = p)))

ylim <- c(0, 1.2 * cons$Y/p[2])

xlim <- c(0, 1.2 * cons$Y/p[1])

ux1 <- xlim[1]

ux2 <- xlim[2]

ux <- seq(ux1, ux2, len = 50)

uy <- vector()

for (i in 1:length(ux)) uy[i] <- eval(U$Indif, as.list(c(U$par,

U = x$V, x1 = ux[i])))

plot(ux, uy, xlim = xlim, ylim = ylim, xlab = "X1", ylab = "X2",

type = "l", col = 2, lwd = 2, bty = "n")

} else U$Indif(x$V, U$par)

bx <- seq(0, cons$Y/p[1], len = 10)

by <- cons$Y/p[2] - p[1] * bx/p[2]

lines(bx, by, lwd = 2)

points(x$x1, x$x2, pch = 21, bg = 1)

title(paste("Solution for ", cons$name, sep = ""))

ax <- x$x1 + (cons$Y/p[1] - x$x1) * 0.2

ay <- x$x2 + (cons$Y/p[2] - x$x2) * 0.2

mes <- paste("(", round(x$x1, 2), ", ", round(x$x2, 2), ")",
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sep = "")

text(ax, ay, mes, pos = 4)

arrows(ax, ay, x$x1, x$x2)

}

> plot(cons1,p)
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(26.67, 80)

> plot(cons2,p)
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> plot(cons3,p)
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(29.33, 78)

Here is the function for the Engel curve:

Engel <- function(cons, p) {

Y <- seq(cons$Y * 0.5, cons$Y * 1.5, len = 40)

X1 <- vector()

X2 <- vector()

cons1 <- cons

for (i in 1:length(Y)) {

cons1$Y <- Y[i]

res <- solve(cons1, p, FALSE)

X1[i] <- res$x1

X2[i] <- res$x2

}

ylim <- c(min(c(X1, X2)), max(c(X1, X2)))

plot(Y, X1, type = "l", xlab = "Income", ylab = "X", ylim = ylim,

bty = "n", lwd = 2)

lines(Y, X2, col = 2, lwd = 2)

legend("topleft", c("X1", "X2"), col = 1:2, lty = c(1, 1))

title(paste("Engel Curve for ", cons$name, sep = ""))

}

> Engel(cons1,p)
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Appendix B

Sweave

In this section, we want to give a small introduction to Sweave of [Leisch 2002], which

allows to produce documents using LATEX 2ε. In the first section, we give an introduc-

tion to LATEX 2ε, and in the second section we show how to incorporate R codes in your

document. The best way to get help is through Google, but it is recommended to go

though the manuals: http://en.wikibooks.org/wiki/LaTeX and http://www.stat.uni-

muenchen.de/∼leisch/Sweave/.

B.1 Latex

LATEX 2ε is an environment for producing scientific documents. The current version

exists since 1994 and is widely used in academia. There exists no better alternative

for producing documents with lots of equations. Once you get used to it, you never

want to go back to software such as MS Word. Nowm I use it even to write small

letters. However, there is a fix cost of switching from a WYSIWYG software to one

that requires coding. But what better place then in a numerical method course to learn

another computer language.

If you have a MAC or a PC running Windows, you can install LATEX 2ε for free on

the MikeTex web page: http://miktex.org/. You just need to follow the instructions.

If you are running Linux, it is in general installed automatically. Once installed, you

have the tools for producing documents but not the editor. The latter is not required

but it makes your life much easier. There are many LATEX 2ε editors, so you can search

for it and pick the one you like the most. My suggestion is Texmaker. It is open

source and can be downloaded at http://www.xm1math.net/texmaker/ for free. Once

installed, you may need to modify a little the configuration for Sweave and pdf-Latex.

For Sweave, you go to the menu ”option”-”Configure Texmaker”, and locate R Sweave

(usually the last slot). You should put the path to R.exe instead of just R before CMD.

You can now click on quick build, choose ”user”and use the wizard to select first Sweave

and then pdf-Latex. Once the command is created in the text box, replace everything

between | and %.tex by the path to R.exe followed by ”CMD texify”. In my experience,

it never works at the first attempt. I can provide help for configuration if you need

assistance.

Once installed, you are go to go. A Latex file must end with the .tex. For example,

http://en.wikibooks.org/wiki/LaTeX
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://www.stat.uni-muenchen.de/~leisch/Sweave/
http://miktex.org/
http://www.xm1math.net/texmaker/
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you may create the file test.tex and put the following in it:

\documentclass [12pt ,letterpaper ]{ article}

\usepackage{amsthm}

\usepackage[hmargin =3cm,vmargin =3.5cm]{ geometry}

\usepackage[utf8x]{ inputenc}

\usepackage[active ]{ srcltx}

\usepackage{amsmath}

\usepackage{verbatim}

\usepackage{amsfonts}

\usepackage{amssymb}

\usepackage{graphicx}

\newcommand\R{ \mathbb{R} }

\newcommand\N{ \mathbb{N} }

\newcommand\C{ \mathbb{C} }

\newcommand\Q{\ mathbb{Q}}

\author{Pierre Chauss\’e \footnote{Department of Economics ,

University of Waterloo , Ontario ,

Canada (pchausse@uwaterloo.ca)} }

\title{\ textbf A Template for \LaTeXe {}}

\date{\today}

\usepackage{Sweave}

\begin{document}

\maketitle

\section{Introduction}

This is my introduction ...

\end{document}

For most of you first documents, you just copy the above code in a .tex file and run pdf-

Latex (F6 in Texmaker and F7 to see the pdf). You just need to write your document

between the \begin{document} and \end{document}. Try the above codes in a file

and modify the title, author, and section title. You can also start writing stuff in the

section. The main part are divided in section{} subsection{}, and subsubsection{}.
By default, the sections, and subsections are numbered. If you do not want numbered

sections, you add a * to the type of section (try all the codes bellow to make sure you

understand what they do):
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% With number

%%%%%%%%%%%%%%

\section{Section 1}

blabla

\subsection{my first subsection}

blabla

\subsubsection{Why not another one}}

blabla

\section{Section 2}

end of my blabla

% Without number

%%%%%%%%%%%%%%

\section *{ Section 1}

blabla

\subsection *{my first subsection}

blabla

\subsubsection *{Why not another one}}

blabla

\section *{ Section 2}

end of my blabla

Of course, you do not need to use sections. You can use the following fonts to initiate

sections like a Question 1: in an assignment (here I give you many different fonts that

you can also produce by using the automatic format builder in Texmaker):

\textbf{Bold}

\textit{Italic}

\large{a little large}

\Large{a little larger}

\LARGE{even larger}

You can also use the following environment (which do not require explanation):

\begin{Huge}

Huge text

\end{Huge}

\begin{center}

Something in the middle

\end{center}

\begin{itemize}

\item item 1

\item item 2

\end{itemize}

\begin{enumerate}

\item with number instead of bullets

\item[a)] I prefer a letter

\end{enumerate}
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And all of these environment can be combined:

\begin{center}

\begin{Huge}

Huge text in the middle

\end{Huge}

\end{center}

\begin{enumerate}

\item[a)] I want to itemize each enumeration

\begin{itemize}

\item item 1 of a)

\item item 2 of a)

\end{itemize}

\item[b)]

\begin{itemize}

\item item 1 of b)

\item item 2 of b)

\end{itemize}

\end{enumerate}

All of the above allows you to write your document. However, there are hundreds of

other commands to enhance your documents. You can go through the manual to find

out about them or simply look for what you need (a Google search) while you are

writing your document. It is up to you.

We can experience how powerful is LATEX 2ε when we start writing equations. You

can insert equations (in fact you must) inside your text by using $$. For example, the

sentence: “The valiable X is a random variable distributed as N(µ, σ2)”, is produced

by writing:

The valiable $X$ is a random variable distributed as

$N(\mu ,\sigma ^2)$.

If you forget the $$ especially with command such as \sigma, pdf-Latex will return an

error message. It is often the first source of errors. If you want to write an equation

on a single line, you can use the environment equation, for numbered equations, and

equation* for unnumbered equations. The latter has a shortcut as you can see in the

following examples. The following:

f(x) =
1√

2πσ2
e−0.5(x−µ)

2/σ2
(B.1)

∫ ∞
−∞

f(x)dx = 1

∫ ∞
−∞

x

(
1√

2πσ2
e−0.5(x−µ)

2/σ2

)
dx = µ
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n∑
i=0

ai = 1 + a+ a2 + · · ·+ an

= 1−an+1

1−a

was produced using the following commands:

\begin{equation}

f(x) = \frac {1}{\ sqrt {2\pi\sigma ^2}}e^{ -0.5(x-\mu)^2/\ sigma ^2}

\end{equation}

\begin{equation *}

\int_{-\infty }^{\ infty} f(x) dx = 1

\end{equation *}

\[

\int_{-\infty }^{\ infty} x\left(\frac {1}{\ sqrt {2\pi\sigma ^2}}

e^{ -0.5(x-\mu)^2/\ sigma ^2}\ right) dx = \mu

\]

\begin{eqnarray *}

\sum_{i=0}^n a^i = & 1 + a + a^2 + \cdots + a^n\\

= & \frac{1-a^{n+1}}{1 -a}

\end{eqnarray *}

I will let you understand the commands based on the result. Notice the left-right

environment. It can be used with (), [], ||, and {}. You can also write matrices:

Σ =

σ11 σ12 σ13
σ21 σ22 σ23
σ31 σ32 σ33


which is produced with

\[

\Sigma = \begin{pmatrix}

\sigma _{11} & \sigma _{12} & \sigma _{13}\\

\sigma _{21} & \sigma _{22} & \sigma _{23}\\

\sigma _{31} & \sigma _{32} & \sigma _{33}\\

\end{pmatrix}

\]

We can also have only one side parenthesis:

y =


1 + x if −1 ≤ x ≤ 0

1− x if 0 ≤ x ≤ 1

0 otherwise

produced by

\[

y = \left\{
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\begin{array}{ccc}

1+x & \mbox{if} & -1 \leq x \leq 0\\

1-x & \mbox{if} & 0 \leq x \leq 1\\

0 & \mbox{otherwise} &

\end{array} \right.

\]

I could write pages with examples. This is something you have to discover by yourself.

One last thing I want to show you is how to build tables:

Table B.1: My first table means absolutely nothing
Var1 Var2 Var3 Var4

Speed 0.8175 0.6336 0.3590 0.4684

Variance 0.4194 0.8996 0.9569 0.8990

Mean 0.7047 0.2999 0.4654 0.2105

Was produced using the following:

\begin{table}[ht]

\begin{center}

\caption{My first table means absolutely nothing}

\begin{tabular }{ rrrrr}

\hline

& Var1 & Var2 & Var3 & Var4 \\

\hline

Speed & 0.8175 & 0.6336 & 0.3590 & 0.4684 \\

Variance & 0.4194 & 0.8996 & 0.9569 & 0.8990 \\

Mean & 0.7047 & 0.2999 & 0.4654 & 0.2105 \\

\hline

\end{tabular}

\end{center}

\end{table}

There is a whole Wiki for tables. I invite you to consult it when needed at

http://en.wikibooks.org/wiki/LaTeX/Tables.

B.2 Sweave

Sweave is just an R command that generate a .tex file from an .Rnw file in which we can

insert R codes. The .Rnw file is a tex file in which we add R commands. There are two

ways on inserting codes: in the text or in a chunk. The .Rnw file must be executed first

with ”R CMD Sweave file name”. That command creates a .tex file. Once created, we

can run pdflatex on it to create the pdf file. That’s what Texmaker will do for you once

correctly configured (the quick build does both at the same time). So in this section,

http://en.wikibooks.org/wiki/LaTeX/Tables


B.2. Sweave 211

you will create an .Rnw file and copy the .tex template I gave you at the beginning of

the previous section. You can add what you will learn in this section.

As a first example, you can write the following sentence: “The square root of

7 is approximately equal to 2.6458.” by writing the following: “The square root

of 7 is approximately equal to \Sexpr{round(sqrt(7),4)}.”. You can write any R

codes inside \Sexpr{} and it will print the result. This is of course only useful to

print a single number. Most of the time, R codes are written inside chunks. A

chunk is several R commands written between <<>>= and @. For example, you can

generate x, y, run a regression yi = α+βxi+ei, and print the results using the following:

<<>>=

set.seed(123)

x < −rnorm(100)

y < −1 + 2 ∗ x+ rnorm(100)

res < −lm(y ∼ x)

summary(res)

@

which would produce
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> set.seed(123)

> x <- rnorm(100)

> y <- 1+2*x+rnorm(100)

> res <- lm(y~ x)

> summary(res)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-1.9073 -0.6835 -0.0875 0.5806 3.2904

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.89720 0.09755 9.197 6.69e-15 ***

x 1.94753 0.10688 18.222 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9707 on 98 degrees of freedom

Multiple R-squared: 0.7721, Adjusted R-squared: 0.7698

F-statistic: 332 on 1 and 98 DF, p-value: < 2.2e-16

You can even use those results in your text: The standard deviation of β is

0.106878616528031 and the t-statistics is 18.2218712105241. Here, the object ”res”

is kept in memory throughout the document so we can always reuse it (try to do it).

If you do not want us to see the codes, but only the results, you can add the option

echo=false:

<< echo = false >>=

set.seed(123)

x < −rnorm(100)

y < −1 + 2 ∗ x+ rnorm(100)

res < −lm(y ∼ x)

summary(res)

@

would produce

Call:

lm(formula = y ~ x)
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Residuals:

Min 1Q Median 3Q Max

-1.9073 -0.6835 -0.0875 0.5806 3.2904

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.89720 0.09755 9.197 6.69e-15 ***

x 1.94753 0.10688 18.222 < 2e-16 ***

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.9707 on 98 degrees of freedom

Multiple R-squared: 0.7721, Adjusted R-squared: 0.7698

F-statistic: 332 on 1 and 98 DF, p-value: < 2.2e-16

There is also a nice R package that produces Latex tables from R matrices or other

objects. For example the following

<< echo = false, results = tex >>=

library(xtable)

set.seed(123)

x < −rnorm(100)

y < −1 + 2 ∗ x+ rnorm(100)

res < −lm(y ∼ x)

xtable(summary(res), digit = 4)

@

Would produce this nice result: You can also produce graphs with the option fig=true

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.8972 0.0976 9.1972 0.0000

x 1.9475 0.1069 18.2219 0.0000

(be careful not to put that option without plotting anything. It creates a fatal error)

The following:

<< echo = false, fig = true >>=

set.seed(123)

x < −rnorm(100)

y < −1 + 2 ∗ x+ rnorm(100)
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res < −lm(y ∼ x)

plot(x, y, title = ”Y as a function of X”)

abline(res)

@
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You can do everything that is allowed by R in these chunks. You can write a bunch

of functions, save them in one file and use source() in a chunk at the beginning so

that all functions can be used in the main document. It is all you need to know about

Sweave. Once you know R, which is the hardest part to learn along with LATEX 2ε, it

is a very convenient way of producing your documents.
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Using foreign languages within R

C.1 The motivation

In this section, we present briefly how to call functions that are written in another

language such as C or Fortran. The main reason for writing codes in C is to increase

the speed. For example, we saw that adding the elements of a vector using loops is

very slow in R. You could instead write the loop in C, and call the function from R.

The C function would look like (in a file mySum.c):

#include <R.h>

#include <Rmath.h>

void mySum(double *x, int *n, double *sum)

{

int i;

double sum1 = 0.0;

for (i=0; i< *n; i++) {

sum1 += x[i];

}

*sum = sum1;

}

Once you have compiled the .c file, you can create an R function mySum() as follows:

mySum_C <- function(x)

{

res <- .C("mySum",as.double(x), as.integer(length(x)),as.double(0.0))

res[[3]]}

Then, the function would simply be used as any R function. Here is an example:

dyn.load("src/mySum.so")

set.seed(222)

x <- rnorm(500000)

ans1 <- mySum_C(x)

ans2 <- sum(x)

ans1
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## [1] -224.6011

ans2

## [1] -224.6011

We can compare the speed of loops in R and C just to see why it is better to use

the latter:

mySum_R <- function(x)

{

s <- 0

for (i in 1:length(x))

s <- s + x[i]

s}

system.time(mySum_R(x))

## user system elapsed

## 0.152 0.000 0.155

system.time(mySum_C(x))

## user system elapsed

## 0.004 0.000 0.003

As we see, it is about 100 times faster for the same loop. This is particularly useful

when loops are unavoidable and that you need to evaluate the function several times.

For example, suppose you want to estimate an MA(1) process Xt = θεt−1 + εt. The

log-likelihood is:

l(θ, σ2) = −n− 1

2
log (2πσ2)− 1

σ2

n∑
i=1

ε2t

with

εt = xt − θxt−1 + θ2xt−2 − ...± θt−1x1

The C code would look like the following:

#include <R.h>

#include <Rmath.h>

void ll(double *x, int *n, double *theta , double *sigma2 , double *

loglik)
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{

int i;

double llik , pi, Cst , eps;

pi = 4.0* atan (1.0);

Cst = -0.5*log(2 * pi * *sigma2);

eps = x[0];

llik = Cst - 0.5* pow(eps ,2) / *sigma2;

for (i=1; i< *n; i++) {

eps = x[i] - *theta * eps;

llik += Cst - 0.5* pow(eps ,2) / *sigma2;

}

*loglik = llik;

}

and the R function as:

myMa_ll <- function(beta, x)

{

theta <- beta[1]

sigma2 <- beta[2]

res <- .C("ll",as.double(x), as.integer(length(x)),

as.double(theta), as.double(sigma2), as.double(0.0))

-res[[5]]

}

Lets now try it:

dyn.load("src/ll.so")

x <- arima.sim(n=5000, model=list(ma=.9))

t1 <- system.time(res <- optim(c(.5,.5),myMa_ll, x=x))

t1

## user system elapsed

## 0.008 0.000 0.005

res$par

## [1] 0.9137083 0.9956378

To see that relying on C makes a big difference here, lets redo the estimation in R

only.



218 Appendix C. Using foreign languages within R

myMa_ll2 <- function(beta, x)

{

theta <- beta[1]

sigma2 <- beta[2]

Cst <- -0.5*log(2*pi*sigma2)

eps = x[1]

llik = Cst - 0.5*eps^2 / sigma2

for (i in 2:length(x))

{

eps <- x[i] - theta * eps

llik <- llik + Cst - 0.5*eps^2 / sigma2

}

-llik

}

t2 <- system.time(res2 <- optim(c(.5,.5),myMa_ll2, x=x))

t2

## user system elapsed

## 2.356 0.000 2.358

res2$par

## [1] 0.9137083 0.9956378

For this example, it is 472 times faster to use the C function. Of course, the ratio

would be much higher if the function had more coefficients and that the optim() algo-

rithm took many more iterations to converge (Try with an ARMA(2,2)+GARCH(1,1)).

If I failed to convince you, stop reading. Otherwise, the next section explains are to

proceed.

C.2 Brief How To

Here, I explain how to proceed if you are using either a Linux OS or a MAC. I don’t

know how it works in a Windows environment and I cannot test it since I do not have

computers with Windows. The only think that you need is a compiler for either C or

Fortran. It is installed on most Linux distributions and for MAC you need to install

Xcode that can be downloaded from the Apple developer website for free once you

register. I am explaining the procedure for C only since I am more familiar with that

language. For more details see http://dirk.eddelbuettel.com/bio/presentations.html

http://dirk.eddelbuettel.com/bio/presentations.html
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, http://www.cran.r-project.org/doc/manuals/r-release/R-exts.pdf or, if you want a

book, Statistical Computing in C++ and R.

The main steps are (1) write your C or C++ codes in a file, (2) run R CMD SHLIB

your file, (3) put dyn.load(”your file.so”) at the beginning of the R script file, (4) write

an R function that calls the C or C++ function. There are three ways (maybe more)

of calling a C function in R: .C(), .Call(), or .External(). I will explain the first two.

You have to understand first that it is recommended in the main R manual to do it in

pure R first, then using .C() and finally .Call() if you are still unsatisfied. The main

difference between .C() and .Call() is that the latter allows to use R functions within

the C codes. It is much newer than the .C() and therefore should be used with caution

(See the above manual for more details).

The C functions included in the .c file should not return any value. Therefore, it

should be of the form

void myfct(arguments){

...

}

The arguments of the functions are pointers (here I am assuming you know what it

means; it points to the address in the memory where is stored the argument) and it

is the values associated with these pointers that are returned by .C() in a list format.

Since they are pointers, modifying their values inside the function will automatically

change the values returned by .C(). If we go back to the MySum() function:

#include <R.h>

#include <Rmath.h>

void mySum(double *x, int *n, double *sum)

{

int i;

double sum1 = 0.0;

for (i=0; i< *n; i++) {

sum1 += x[i];

}

*sum = sum1;

}

we can see that there are 3 arguments: the vector x, the length of x, and the pointer

that will store the sum. The star indicates that these are pointers. Also, you have to

specify the type of variable associated with each argument. The main type that we will

use are integers (int) or double precision floating numbers (double). For a vector, the

pointer points to the address of the first element (x[0]), and the others can be obtained

using x[i]. For the integer types, to access their values by adding a star. So in the loop

setup, I use “;i<*n;”, not “;i<n;”. Notice that most of the time, you only need to load

the libraries R.h and Rmath.R. You therefore need at least the first two lines in each

http://www.cran.r-project.org/doc/manuals/r-release/R-exts.pdf
http://www.amazon.com/Statistical-Computing-Chapman-Hall-Series/dp/1420066501
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of your .c files. You have the choice between writing several functions inside the same

file or to have a different file for each function. It is up to you.

If we look at the R function that calls it:

mySum_C

## function(x)

## {

## res <- .C("mySum",as.double(x), as.integer(length(x)),as.double(0.0))

## res[[3]]}

we can see that we first have to make sure the arguments are of the right type.

For the third argument that will point to the answer, I just give an arbitrary value.

I then return the third element of the list generated by .C(). In order to be able to

run that function, we need to load the object containing the C function. That object

is the output we get by compiling our .c file. You could do it manually using gcc, but

you would have to specify the location of the R libraries. It is easier to use R. Just

open a terminal, go to the directory in which mySum.c is and type “R CMD SHLIB

mySum.c”. This will create a file “mySum.so”. Place that file in the working directory

of R, open R, and type

dyn.load("mySum.so")

You can now use the R function mySum(). Notice that the name of the functions

are the same in R and C. It does not matter before the C function can only be run

through .C().

As another example, suppose you want to do a kernel regression to estimate Yi =

m(Xi) + εi. The estimated function m̂(x) is defined as:

m̂(x) =

∑n
i=1Kh(Xi − x)Yi∑n
i=1Kh(Xi − x)

where

Kh(x) =
1√
2πh

e−
1
2h
x2

This is a pretty intensive method because the sum must be obtained for each point x.

Also, the bandwidth h (this is one possibler method) is obtained by minimizing the

following cross-validation criterion:

CV =

n∑
i=1

(Yi − m̂−i(Xi))
2
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where m̂−i(Xi) is the prediction of Yi obtained by removing the ith observation. The

kernel.c file shown below. Notice that I decided, as I usually do in R. to write small

functions. The ones that are called by other C functions can return something. For

example, the gaussian() function returns a number of type double. It is the same with

kernel lou() which returns the kernel estimate leaving one observation out of the sample

(lou = leave-one-out).

#include <R.h>

#include <Rmath.h>

double gaussian(double x, double h) {

double pi, ans;

pi = 4.0* atan (1.0);

ans = exp (-0.5*pow(x,2)/h)/sqrt (2*pi*h);

return ans;

}

double kernel_lou(double *y, double *x, int n, double xi, double h,

int leaveout) {

int i;

double m=0.0, k=0.0, k1;

for (i=0; i<n; i++) {

if (i != leaveout) {

k1 = gaussian(xi-x[i], h);

k += k1;

m += k1*y[i];

}

}

m = m/k;

return m;

}

void kernel(double *y, double *x, int *n, double *h, double *xi,

double *mhat) {

int i;

double m=0.0, k=0.0, k1;

for (i=0; i < *n; i++) {

k1 = gaussian (*xi-x[i], *h);

k += k1;

m += k1*y[i];

}

*mhat = m/k;

}

void crossval(double *y, double *x, int *n, double *h, double *cv) {

int i;

double cv2=0.0, yhat;

for (i=1; i < *n; i++){

yhat = kernel_lou(y, x, *n, x[i], *h, i);

cv2 += pow(y[i]-yhat ,2);

}

*cv = cv2;

}
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and my R functions are:

CV <- function(h, data)

.C("crossval", as.double(data$y), as.double(data$x),

as.integer(length(data$x)), as.double(h), as.double(0.0))[[5]]

getKernel <- function(x, data, h)

sapply(x, function(i) .C("kernel", as.double(data$y), as.double(data$x),

as.integer(length(data$x)), as.double(h),

as.double(i), as.double(0.0))[[6]])

Lets try is with a sample of 1000 observations.

dyn.load("src/kernel.so")

set.seed(1222)

x <- runif(1000, -2*pi, 2*pi)

y <- sin(x) + rnorm(1000)

system.time(h <- optimize(CV, c(.0001,1),data=list(x=x,y=y))$minimum)

## user system elapsed

## 0.432 0.000 0.429

system.time(mhat <- getKernel(sort(x), list(x=x,y=y),h))

## user system elapsed

## 0.044 0.000 0.045

This is a very good example that shows the gain we get from writing out codes in C.

The leave-one-out cross-validation requires to estimate m̂−i(Xi) for all n observations

every time we change the value of h. Try to do it in pure R. On my computer, it took

66 seconds to get h and 4.5 seconds to get mhat. Of course, cross-validation codes

should be parallelized, which would make R codes faster. The same thing is true also

with the C codes. We can then plot the solution:

plot(x,y,main=paste("Kernel Regression (h = ",round(h,2),")",sep=""),

xlab="X", ylab="Y")

lines(sort(x), mhat,col=2,lwd=2)

lines(sort(x),sin(sort(x)),col=3,lwd=2)

legend("topright",c("mhat(x)","m(x)"),col=2:3,lty=1,lwd=2)
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Almost everything can be computed using C codes and then called by R. However,

it is a problem when it comes to working with matrices. C does not deal directly with

matrices. R is much better designed to do matrix operations and it is highly optimized.

There would therefore be no much gain by writing you own C library.

A new approach that has recently been developed is to use R functions into the

C codes. Such a function is called by R using .Call() instead of .C(). To give you an

example, here is a modified version of the C codes for adding elements of a vector.

#include <R.h>

#include <Rmath.h>

#include <Rinternals.h>

SEXP mySum3(SEXP x)

{

int i, n;

double *p_sum1;

SEXP sum1;

sum1 = PROTECT(sum1 = allocVector(REALSXP ,1));

p_sum1 = REAL(sum1);

*p_sum1 = 0.0;

n = length(x);

for (i=0; i < n; i++) {

*p_sum1 += REAL(x)[i];

}

UNPROTECT (1);

return sum1;

}
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You need to load the library Rinternals.h in which new functions and variable types

are defined. The main difference is that all variables are defined as being of type SEXP

which stands for“Simple EXPression”(A complete presentation of all R internals can be

found at http://cran.r-project.org/doc/manuals/R-ints.html). The coding is somehow

confusing at first but is relatively simpler when we get used to it. Notice that a variable

of type SEXP does not really have a type. The type must me defined in the function.

The line “sum1 = allocVector ( REALSXP ,1)” defines the variable sum1 as being a one

dimensional vector of type double. The main types are: double (REALSXP), integers

(INTSXP), logical (LGLSXP), complex (CPLXSXP), and character (STRSXP). In the

above example, I created a pointer (p sum1) and the value attached to it is updated in

the loop, which also updates sum1. Noltice that we do not need to provide the length

of the vector. The function length() is available. Also, since the function returns the

answer, we do not need to have an argument in which to store the answer. Finally, we

need to use PROTECT() and UNPROTECT() when we create new variables to make

sure the memory is not used elsewhere. Lets try it and compare it with the previous

function.

mySum_SEXP <- function(x)

.Call("mySum3",x)

dyn.load("src/mySum3.so")

set.seed(222)

x <- rnorm(500000)

system.time(ans1 <- mySum_C(x))

## user system elapsed

## 0.000 0.000 0.002

system.time(ans2 <- mySum_SEXP(x))

## user system elapsed

## 0.000 0.000 0.001

c(ans1,ans2)

## [1] -224.6011 -224.6011

It seems to be a little faster but I cannot tell why. Here is the modified codes using

SEXP type variable and Rinternals. Notice that I wrote the code in a way that we

http://cran.r-project.org/doc/manuals/R-ints.html
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do not have to use sapply() in the kernel function. All points are obtained by the C

function.

#include <R.h>

#include <Rmath.h>

#include <Rinternals.h>

double gaussian(double x, double h) {

double pi, ans;

pi = 4.0* atan (1.0);

ans = exp (-0.5*pow(x,2)/h)/sqrt (2*pi*h);

return ans;

}

double kernel_lou(double *y, double *x, int n, double xi, double h,

int leaveout) {

int i;

double m=0.0, k=0.0, k1;

for (i=0; i<n; i++) {

if (i != leaveout) {

k1 = gaussian(xi-x[i], h);

k += k1;

m += k1*y[i];

}

}

m = m/k;

return m;

}

SEXP kernel_SEXP(SEXP y, SEXP x, SEXP h, SEXP xvec) {

int i, j, nx, nxvec;

double *m_p , k, k1;

SEXP m;

y = coerceVector(y,REALSXP);

x = coerceVector(x,REALSXP);

xvec = coerceVector(xvec ,REALSXP);

h = coerceVector(h,REALSXP);

nx = length(x);

nxvec = length(xvec);

PROTECT(m = allocVector(REALSXP ,nxvec));

m_p = REAL(m);

for (j=0; j < nxvec; j++)

{

k = 0.0;

m_p[j] = 0.0;

for (i=0; i < nx; i++) {

k1 = gaussian(REAL(xvec)[j]-REAL(x)[i], REAL(

h)[0]);

k += k1;

m_p[j] += k1 * REAL(y)[i];

}

m_p[j] = m_p[j] / k;
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}

UNPROTECT (1);

return m;

}

SEXP crossval_SEXP(SEXP y, SEXP x, SEXP h) {

int i, n;

double *cv_p ,yhat;

SEXP cv;

y = coerceVector(y,REALSXP);

x = coerceVector(x,REALSXP);

h = coerceVector(h,REALSXP);

n = length(x);

PROTECT(cv = allocVector(REALSXP ,1));

cv_p = REAL(cv);

*cv_p = 0.0;

for (i=1; i < n; i++){

yhat = kernel_lou(REAL(y), REAL(x), n, REAL(x)[i],

REAL(h)[0], i);

*cv_p += pow(REAL(y)[i]-yhat ,2);

}

UNPROTECT (1);

return cv;

}

dyn.load("src/kernel_SEXP.so")

CV_SEXP <- function(h, data)

.Call("crossval_SEXP", data$y, data$x, h)

getKernel_SEXP <- function(x, data, h)

.Call("kernel_SEXP", data$y, data$x, h, x)

set.seed(1222)

x <- runif(1000, -2*pi, 2*pi)

y <- sin(x) + rnorm(1000)

system.time(h <- optimize(CV_SEXP, c(.0001,1),data=list(x=x,y=y))$minimum)

## user system elapsed

## 0.424 0.000 0.426

system.time(mhat <- getKernel_SEXP(sort(x), list(x=x,y=y),h))

## user system elapsed

## 0.04 0.00 0.04

Notice that the gain from using C instead of sapply is very small. We can compare

more precisely the performance usinf the package rbenchmark:
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library(rbenchmark)

f <- function()

getKernel(sort(x), list(x=x,y=y),h)

f_SEXP <- function()

getKernel_SEXP(sort(x), list(x=x,y=y),h)

benchmark(f(), f_SEXP(), replications=50,

columns=c("test", "replications", "elapsed", "relative"))

## test replications elapsed relative

## 1 f() 50 2.340 1.192

## 2 f_SEXP() 50 1.963 1.000

There is a small gain which is probably due to the use of C instead of sapply()

rather than the use of SEXP type. The latter is just another way of programing. It is

not meant to be more efficient. We can compare them with a modified function that

uses mclapply.

getKernel_MC <- function(x, data, h)

{

res <- mclapply(x, function(i) .C("kernel", as.double(data$y),

as.double(data$x),

as.integer(length(data$x)),

as.double(h),

as.double(i),

as.double(0.0))[[6]], mc.cores=8)

simplify2array(res)

}

f_MC <- function()

getKernel_MC(sort(x), list(x=x,y=y),h)

library(parallel)

benchmark(f(), f_SEXP(), f_MC(), replications=50,

columns=c("test", "replications", "elapsed", "relative"))

## test replications elapsed relative

## 1 f() 50 2.321 1.672

## 3 f_MC() 50 1.388 1.000

## 2 f_SEXP() 50 1.964 1.415
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Not surprisingly, the mcapply() approach wins. It is even faster than the method

that uses only C. It is sometimes necessary to try different methods in order to find

the most efficient one.

There is an even easier way of running C and C++ codes using the Rcpp

package of [Eddelbuettel & Francois 2011]. Many detailed tutorials are available at

http://dirk.eddelbuettel.com/code/rcpp.html. The main goal of the package is to help

package developers to insert C++ codes in their package. You can write your code

in a .cpp file and use R CMD SHLIB as for the above examples, but it is not rec-

ommended. An easy way to use the Rcpp package is through the inline package of

[Sklyar et al. 2013]. As a very simple example, the function to compute the sum of the

elements of a vector could be written as follows.

library(Rcpp)

library(inline)

src = 'Rcpp::NumericVector xx(x);

int i;

Rcpp::NumericVector sum(1);

sum[0] = 0.0;

for (i=0; i<xx.size(); i++)

sum[0] += xx[i];

return sum;'

mySum_Rcpp <- cxxfunction(signature(x = "numeric"), src , plugin = "Rcpp")

We can then compare it with the others:

x <- rnorm(500000)

benchmark(mySum_C(x), mySum_R(x), mySum_SEXP(x), mySum_Rcpp(x), replications=10,

columns=c("test", "replications", "elapsed", "relative"))

## test replications elapsed relative

## 1 mySum_C(x) 10 0.031 2.214

## 4 mySum_Rcpp(x) 10 0.017 1.214

## 2 mySum_R(x) 10 1.523 108.786

## 3 mySum_SEXP(x) 10 0.014 1.000

But we could improve it in the following way:

src = 'Rcpp::NumericVector xx(x);

return wrap( std::accumulate( xx.begin(), xx.end(), 0.0));'

mySum_Rcpp2 <- cxxfunction(signature(x = "numeric"), src , plugin = "Rcpp")

benchmark(mySum_C(x), mySum_R(x), mySum_SEXP(x), mySum_Rcpp(x),

http://dirk.eddelbuettel.com/code/rcpp.html
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mySum_Rcpp2(x), replications=10,

columns=c("test", "replications", "elapsed", "relative"))

## test replications elapsed relative

## 1 mySum_C(x) 10 0.031 2.583

## 5 mySum_Rcpp2(x) 10 0.012 1.000

## 4 mySum_Rcpp(x) 10 0.017 1.417

## 2 mySum_R(x) 10 1.525 127.083

## 3 mySum_SEXP(x) 10 0.014 1.167

The development of packages that facilitate the use of C and C++ codes

has exploded in the last years. On nice package is RcppAmadillo from

[Eddelbuettel & Sanderson 2013], which allows matrix operations. Here is an exam-

ple taken from http://dirk.eddelbuettel.com/code/rcpp.armadillo.html. It estimates a

linear model using OLS.

src <- '

Rcpp::NumericVector yr(y);

Rcpp::NumericMatrix Xr(X);

int n = Xr.nrow(), k = Xr.ncol();

arma::mat X(Xr.begin(), n, k, false);

arma::colvec y(yr.begin(), yr.size(), false);

arma::colvec coef = arma::solve(X, y);

arma::colvec fitted = X*coef;

arma::colvec resid = y - fitted;

double sig2 = arma::as_scalar( arma::trans(resid)*resid/(n-k) );

arma::mat vcov = sig2 * arma::inv(arma::trans(X)*X);

return Rcpp::List::create(

Rcpp::Named("coefficients") = coef,

Rcpp::Named("vcov") = vcov,

Rcpp::Named("fitted") = fitted,

Rcpp::Named("residuals") = resid);'

lm_Rcpp <- cxxfunction(signature(y = "numeric", X = "numeric"), src ,

plugin = "RcppArmadillo")

x <- matrix(rnorm(500000), 5000,100)

y <- rnorm(5000)

benchmark(lm(y~x), lm_Rcpp(y,x), replications=10,

columns=c("test", "replications", "elapsed", "relative"))

## test replications elapsed relative

http://dirk.eddelbuettel.com/code/rcpp.armadillo.html
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## 2 lm_Rcpp(y, x) 10 0.731 1.000

## 1 lm(y ~ x) 10 0.779 1.066

Many packages are build with Rcpp. They are usually meant to be more efficient.

C.3 Fortran

In the past years, I have used Fortran more than C because I find it much easier when it

comes to doing matrix operations. For basic functions, is very much like C, except that

the functions would be saved in a file with the extension .f. The .so file is generated

the same way by typing R CMD SHLIB file.f. If we start with the simple example of

adding the elements of a vector, the function in the ex.f file is

subroutine mysumf(x, n, sum)

integer i, n

double precision x(n), sum

sum = 0.0d0

do i = 1,n

sum = sum+x(i)

end do

end

An important rule to remember is that you cannot write codes on the first 6 spaces of

a line. In Fortran, you do not need to make a distinction between pointers and variable

names as in C and the first element of a vector is x(1) not x(0). Calling the function

in R is similar.

dyn.load("src/ex.so")

myFsum <- function(x)

.Fortran("mysumf", as.double(x), as.integer(length(x)), sum=double(1))$sum

myFsum(rnorm(100))

## [1] 13.15439

It is also possible to use functions from the linear algebra libraries BLAS and LA-

PACK. A list of functions with descriptions and source codes are available on Netlib

(www.netlib.org. A simple Google search with the function name will lead you directly

to help page of that function. In order to create the .so file with the R CMD SHLIB

www.netlib.org
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command, you need to tell the compiler that you are using functions from the BLAS

and LAPACK libraries. R does import some functions, but there are many more avail-

able. To specify the libraries to R, you need to create a file Makevars with no extension

and write the following in it:

PKG_LIBS = ${LAPACK_LIBS} ${BLAS_LIBS}

It is relatively easy to guess the names of the functions. Functions applied to complex

numbers start with a c, and they start with a d for double precision numbers. For

example, the dgeqrf, is a QR factorization of a double general matrix. It is a little

tricky to do linear algebra with the LAPACK library, but once you get used to it and

you have some notions of numerical methods, it becomes relatively intuitive.

In the next example, we want to compute the following:

V =
n∑
i=1

Z ′1iΣ
−1Z2i,

where Z1i is T × k1, Z2i is T × k2 and Σ is T × T . This is one component that we

need to compute in order to obtain the covariance matrix of the estimator in a system

of equations (for more details take ECON 721). The best strategy here is to avoid

inverting Σ n times. Since it is symmetric and positive definite, we want to do the

Cholesky decomposition Σ = PP ′, where P is lower triangular, and solve PP ′x = Z2i

using successively a forward and backward method for triangular systems. The function

that I need is dpotrf for the Cholesky factorization (d: double, po: positive definite, trf:

triangular factorization), and dpotrs which solve Ax = b when A is positive definite.

We have to provide not A but the P matrix computed by dpotrf. We then simply use

dgemm to multiply Z ′1i and (Σ−1Z2i). Here is the Fortran function:

subroutine sumquadra(z1, z2, sig , n, t, k1, k2, s)

integer n, t, k1, k2, i, info

double precision z1(t,k1,n), z2(t, k2, n), sig(t,t), s(k1,k2)

double precision tmp(k1 ,k2), beta , alpha

call dpotrf(’U’, t, sig , t, info)

beta = 0.0d0

alpha = 1.0d0

s(:,:) = 0.0d0

do i=1,n

call dpotrs(’U’, t, k2, sig , t, z2(:,:,i), t, info)

call dgemm(’T’, ’N’, k1, k2, t, alpha , z1(:,:,i), t,

* z2(:,:,i), t, beta , tmp , k1)

s(:,:) = s(:,:)+tmp(:,:)

end do

end
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Notice that the variable sig is replaced by the cholesky factorization and that z2[, , i] is

replaced by Σ−1Z2i. Here is an example:

z1 <- array(rnorm(10*4*1000), c(10,4,1000))

z2 <- array(rnorm(10*5*1000), c(10,5,1000))

sig <- crossprod(matrix(rnorm(100),10,10)) # make sure it is pos. def.

quadraSum <- function(z1, z2, sig)

{

k1 <- dim(z1)[2]

k2 <- dim(z2)[2]

t <- dim(z1)[1]

n <- dim(z1)[3]

res <- .Fortran('sumquadra', as.double(z1), as.double(z2),

as.double(sig), as.integer(n), as.integer(t),

as.integer(k1), as.integer(k2), S=double(k1*k2))

S <- matrix(res$S, k1, k2)

}

Notice that even if the variable z2 is changed in the process, it is only changed in

the function quadraSum. z2 remains unchanged outside the function. Lets compare

the Fortran function with a naive R one:

quadraSumR <- function(z1, z2, sig)

{

S <- matrix(0, dim(z1)[2], dim(z2)[2])

for (i in 1:dim(z1)[3])

S <- S+t(z1[,,i])%*%solve(sig, z2[,,i])

S

}

benchmark(quadraSum(z1,z2,sig), quadraSumR(z1,z2,sig), replications=10,

columns=c("test", "replications", "elapsed", "relative"))

## test replications elapsed relative

## 2 quadraSumR(z1, z2, sig) 10 0.240 15

## 1 quadraSum(z1, z2, sig) 10 0.016 1

C.3.1 Example: The shooting method

First, I reproduce the graph of Chapter 8 for the life cycle model. For that, we need

to write a RK4 in Fortran:
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subroutine rk4(f, parf , nparf , n, k, a, b, y0, x, y, h)

integer n, i, k, nparf

double precision a, b, y0(k), h, x(n+1), y(n+1,k)

double precision f1(k), f2(k), f3(k), f4(k), parf(nparf)

external f

h = (b-a)/n

y(1,:) = y0

x(1) = a

do i=2,(n+1)

x(i) = a+h*(i-1)

call f(x(i-1), y(i-1,:),parf ,f1)

call f(x(i-1)+h/2,y(i-1,:)+h*f1/2, parf , f2)

call f(x(i-1)+h/2,y(i-1,:)+h*f2/2, parf , f3)

call f(x(i), y(i-1,:)+h*f3, parf , f4)

y(i,:) = y(i-1,:) + h*(f1+2*f2+2*f3+f4)/6

end do

end

I make use of the command “external” so that the rk4 function can be used for any

function f. A also need the lifecycle function that returns the first derivatives:

subroutine lifecycle(x, y, par , dy)

double precision par(5), x, y(2), dy(2)

double precision rho , r, gamma , mi, mf , w

rho = par (1)

r = par(2)

gamma = par (3)

mi = par(4)

mf = par(5)

if (x<=mf .and. x>=mi) then

w=1.0d0

else

w=0.0d0

end if

dy(2) = r*y(2)+w-y(1)

dy(1) = (rho -r)*y(1)/gamma

end

and the function that will be called by R:

subroutine getlifecycle(n, rho , gamma , mi, mf, r, a, b, y0, x,

y,

* h)

integer n

double precision rho , gamma , mi, mf, r, a, b, y0(2), x(n+1)

double precision y(n+1,2), par(5), h

external lifecycle

par(1) = rho
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par(2) = r

par(3) = gamma

par(4) = mi

par(5) = mf

call rk4(lifecycle , par , 5, n, 2, a, b, y0, x, y, h)

end

The following R function will generate the solution of the differential equation:

getLifeCycle <- function(y0,n,a=0,b=55,rho=.04,r=.1,M=10,R=40,gamma=-2)

{

res <- .Fortran('getlifecycle', as.integer(n), as.double(rho),

as.double(gamma), as.double(M), as.double(R),

as.double(r), as.double(a), as.double(b), as.double(y0),

x=double(n+1), y=double(2*n+2), h=double(1))

list(x=res$x, y=matrix(res$y, ncol=2), h=res$h)

}

We can then reproduce the graph of Chapter 8 for two different values of c0.

h <- .01

n <- floor(55/h)

s <- getLifeCycle(c(.2,0),n)

s2 <- getLifeCycle(c(.3,0),n)
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