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Abstract

This paper extends functional data analysis to circumstances where researchers encounter time-

varying models with functional dependent variables and multiple functional covariates and have to

handle missing values in the underlying panel data under sign restrictions. Results from a sim-

ulation study suggest that our method can work very well even in small (both N and T ) sized

samples when other traditional approaches fail. Our algorithm is applied to the estimation of the

intergenerational elasticity of earnings using data from the Panel Study of Income Dynamics. Es-

timates based on the functional data approach indicate that the modern literature has somewhat

over-estimated the strength of the average relationship between earnings of fathers and sons and

that earnings for fathers earlier in the sons’ lives have a greater impact on their future earnings.
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1 Introduction

In many applied research contexts, panel data that contain numerical values of labor market and other

economic outcomes that can naturally take the value of zero are used. Often, it is desirable to express

these outcomes, particularly earnings, in logs as they are highly skewed distributions that appear log

normal. This creates a practical issue of how to address the censoring that occurs at zero.

Using studies in the empirical literature measuring intergenerational mobility in earnings as an

example, well known studies have either dropped all data for pairs of fathers and sons when one or more

observations of zero are present in the panel observations (Cf. Solon (1992)) or similarly have required

the fathers and sons to be fully employed in each panel observation to enter the estimation sample (Cf.

Zimmerman (1992)). Procedures of these types raise obvious concerns about selection bias if recovering

estimates of population parameters is the goal of the analysis. Here, we propose the use of functional

data analysis (FDA) as a method of smoothing data observations in panel settings with censoring of

this type.1

The contributions of this paper are threefold: (1) we extend prior functional regression studies that

had considered the case of a single functional covariate to the multi-covariate context (Cf. Ramsay and

Dalzell (1991, Chapter 16)). We find that compared to traditional multiple regression, a new identi-

fication condition is necessary for functional multi-covariate regressions. (2) We explore properties of

multi-covariate functional estimation in the presence of the aforementioned censoring for both depen-

dent and independent variables in Monte Carlo simulations. (3) We apply our algorithm to estimate the

intergenerational correlation in earnings using data from the Panel Study of Income Dynamics (PSID)

as an empirical study.

FDA was first developed in the seminal work of Ramsay and Dalzell (1991) and most of its applica-

tions have been in Biomedical Science and Biomechanics since then. Recently, researchers have started

applying FDA to other areas like Marketing (Wang et al. (2008) and Sood et al. (2009)), Operational

Research (Laukaitis (2008)), and Sports (Chen and Fan (forthcoming)), just to name a few. The only

1A recent study by Chen and Couch (2015) proposed a method-of-moment-type data driven method to address similar

issue; however, the validity of that method is unknown when the parameters of interest are time varying.
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application in Economics we are aware of is Ramsay and Ramsey (2002).

Conceptually, the advantages of FDA are the following: (1) unlike traditional linear regressions,

functional regression allows both the dependent and independent variables to be functions (usually in

terms of time). Therefore, in this more general setting, the parameters of interest are not constants

anymore, but functions, which accommodate time-varying properties naturally. Using our empirical

study as an example, we will be able to estimate the impact of a father’s income when the father was

at age t on the son’s income when the son is at age τ for all the possible pairs of (t, τ), while all the

previous studies have assumed this impact is the same across different combinations of t’s and τ ’s. (2)

Given the fact that we can only collect data discretely even when the underlying data generating process

(DGP) is continuous, there is a potential risk of invalid statistical inference based on estimates from

discrete models (Cf. Merton (1980) and Aı̈t-Sahalia (2002)). FDA does not suffer from this issue.

Next we develop the notation for a general functional regression model that allows for multiple inde-

pendent regressors extending the work of Ramsay and Silverman (2005). In Section 2, basic inferential

formulas for the parameters of the model are provided. Then, Section 3 provides a numerical simulation

of key features of the model. Section 4 goes further to reconsider a well known empirical example,

the relationship of the labor earnings of sons to their fathers through the estimated intergenerational

elasticity. Section 5 contains the conclusion.

2 Functional Data Regression with functional dependent vari-

able and multi-covariate functional independent variables

Statistical analysis involving functional data usually starts with estimating the underlying functional

data Yi(t) ∈ Y, where Y is the set of continuous functions in t, from a panel Yit of observations, with

i = 1, ..., N and t = 1, ..., T . We view the Yi(t) observations as independent random functions.

Following Ramsay and Silverman (2005, Equation 3.1), we assume that Yit = Yi(t) + εit, where the

εit’s are mutually independent zero mean and finite variance random variables. It is well known that

any function can be approximated arbitrarily well by a linear combination of a sufficiently large number
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of basis functions.2 Therefore, we let Yi(t) be expressed as

Yi(t) ≈
k∑
j=1

cijφj(t) = c′iφ(t), (1)

where φj(t) are the known basis functions and cij are the corresponding Fourier coefficients which will

be obtained by minimizing the following penalized least-squares-type objective function:

PSSRi(ci, λ, k) =
T∑
t=1

(Yit − c′iφ(t))
2

+ λ

[∫ (
d2Yi(t)

dt2

)2

dt

]

=
T∑
t=1

(Yit − c′iφ(t))
2

+ λc′i

[∫ (
d2φ(t)

dt2

)(
d2φ(t)

dt2

)′
dt

]
ci. (2)

It is obvious that the PSSR objective function reflects one of the most fundamental principals in Statistics

by balancing the bias and variance of the estimates.

The estimation of ci’s is done separately for each i given the smoothing parameter λ and the number

of basis functions k, but the choice of λ and k are determined jointly by all i’s because we assume the

Yi(t)’s share the same smoothness. We choose the λ and k that minimize the following leave-one-out

cross-validation (LCV).

LCV(λ, k) =
N∑
i=1

LCVi(λ, k) =
N∑
i=1

[
T∑
t=1

(Yit − Ŷ −tit )2

]
, (3)

where Ŷ −tit = (ĉ−ti )′φ(t) and ĉ−ti is the estimate obtained by removing the observation at time t. Ramsay

and Silverman (2005) propose a generalized cross-validation method to reduce computation time but

its validity depends on the assumption that the residuals are homogeneous which might not be realistic

for the income paths that we will be estimating. Therefore we choose not to use it. Note that the LCV

function is smooth in λ for a given k. Hence, we can easily obtain the optimal λ for each k using a fast

and reliable univariate method such as the Brent algorithm, and then search over the k’s.

2For a detailed discussion of basis function, we refer the reader to Ramsay and Silverman (2005, Sections 3.3-6).

4



2.1 Positive Functional Data

When recovering the underlying functional data, researchers sometimes want to impose sign restrictions.

For example, in the intergenerational mobility study, we are interested in the elasticity of childrens’

earnings with respect to their parents’. Due to the log normalities of earnings, we want to express

earnings in logarithms. If all observations were positive, we could estimate the functional data from

log(Yit). However, this approach is not feasible when some observations are equal to zero. We can

think of the presence of a zero as being the result of a market shock which may depend on individual

characteristics, but is not representative of true income potential, which should be strictly positive.

One way to fit a strictly positive functional data to the sample is to assume the following represen-

tation for Yi(t):

Yi(t) ≈ ec
′
iφ(t). (4)

The choice of the exponential function is related to the need to express Yi(t) in logarithms. Once the

ci vector is estimated, we can define the logarithm of Yi(t) as log Yi(t) = c′iφ(t). The estimation with

this transformation is, however, more difficult because the solution does not have a closed form implied

by Equation (2) directly. Instead, we need to minimize the following penalized non-linear least squares

function:

NLPSSRi(λ(k), k) =
T∑
t=1

(
Yit − ec

′
iφ(t)
)2

+ λc′i

∫ (
d2φ(t)

dt2

)(
d2φ(t)

dt2

)′
dtci. (5)

. The parameters λ and k can also be selected by minimizing the LCV of Equation (3), with

Ŷ −tit = e(ĉ−t
i )′φ(t) 3. Figure 1 illustrates the fitted functional data for one observation with three zeros out

of five time units, for two values of k and λ. We can see that the shape of the fit varies with the choice

of k and λ. Figure 2 shows the same data with the estimated curve based on the optimal λ∗ = 0.7639

and k∗ = 7.

When T is small, it becomes difficult to compute the LCV. First, we cannot fit a strictly positive

3To compute the LCV, it is required to solve NT penalized non-linear least squares problems. However, the compu-

tation is done efficiently in the funcreg package for R, using a Newton method with line search in which the derivatives

are computed analitically. The entired algorithm is written in Fortran 90.
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functional data on observations with only zero elements, which implies that it is impossible to compute

the LCV when only one element is non-zero. It does not mean that we have to omit observations with

only one non-zero element but we cannot base our choice of the smoothing parameters λ and k on

those observations. Furthermore, when the number of non-zero elements is equal to two and T is small

(T = 5 in the application below), the non-linear algorithm used to compute the c−ti ’s sometimes fails to

converge, which also prevents us from computing the LCV. 4 Figure 3 shows what happens when the

algorithm fails to converge. The smoothing parameter λ becomes inoperative and the function overfits

the data points.5

What we propose to avoid complications regarding the computation of the LCV when T is small

and zeros are present is to base the choice of λ and k on observations with no zero element. We assume

that the level of smoothness does not depend on whether zeros are observed or not. Once the optimal

smoothing parameters are obtained we then fit a functional data to each i.

2.2 Multiple Functional Regression

Because previous research using functional regression only considered a single covariate but many com-

mon applications including the one considered here are multi-covariate, we provide the necessary deriva-

tion for the multivariate case. We also discuss the identification for the multi-covariate case. For the

complete derivation, see Appendix A. We write the general model as:

yi(t) = β0(t) +

q∑
j=1

∫
Ω

βj(s, t)xij(s)ds+ εi(t). (6)

4The main problem comes from the fact that R is by construction positive semi-definite. It therefore becomes possible

that the NLPSSR reaches a flat region in which c′iRci is nearly zero.

5It is important to note that c′iRci can be numerically negative for some ci even if R is positive semi-definite, which

complicates the minimization of the NLPSSR. To avoid such numerical problem, c′iRci is computed using its eigenvalues

representation in which all eigenvalues less than the square root of the machine-epsilon in absolute value are set to 0.
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Figure 1: Positive functional data fit for an observation with three zeros
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Figure 2: Positive functional data fit with three zero and optimal λ∗ = 0.7639 and k∗ = 7.
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Figure 3: Convergence problem with only one non-zero element

yi(t) refers to a functional outcome of unit i indexed by time t. β0(t) is the intercept function. βj(s, t)’s

are bi-variate slope functions indexed by time t and s jointly. The variable xij(s), j = 1, ..., q, is a set

of independent variables that influence individual i outcomes. s indexes the timing of xij(s). εi(t) is

assumed to be an i.i.d. error term. q indexes the regressors.

Here we assume that the integrals are evaluated over a common interval Ω. So, for notational

simplicity, we suppress the reference to Ω throughout the paper. In some cases, it may be more ap-

propriate to allow regressors to affect yi(t) over different time intervals. Nonetheless, that extension is

straightforward and would primarily complicate the exposition.

Before presenting the details about the estimation method, we want to briefly discuss the identi-

fication issue. We can see in the following that βj(s, t) not being additively separable is a necessary

condition for identification. This identification condition is new to the literature. Suppose q = 1 and
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β1(s, t) = α(s) + θ(t). Then,

yi(t) = β0(t) +

∫
α(s)xi(s)ds+ θ(t)

∫
xi(s)ds+ εi(t)

= β0(t) + const. + θ(t)

∫
xi(s)ds+ εi(t)

For fixed T and N going to infinity θ(t) is not identified. The intuition behind this is the same as the

“incidental parameters problem” in panel data analysis (see Lancaster (2000) for a good overview of

this problem in econometrics). This is not surprising, as functional data is after all a continuous version

of the panel data we observe.

Following the results from the previous section, we assume that each functional data vector can be

correctly approximated by a linear combination of basis functions. So we can write:

yi(t) ≈ C ′yiφy(t),

and

xij(s) ≈ C ′xijφxj(s).

For the functional coefficients, we approximate the functional β0(t) as:

β0(t) ≈
k0∑
l=1

C0lφ0l(t) = C ′0φ0(t)

and the bivariate functional coefficient βj(s, t) as:

βj(s, t) ≈
ksj∑
l=1

ktj∑
r=1

Cjlrφsjl(s)φtjr(t) = φ′sj(s)Cjφtj(t)

The number of basis in β0(t) and βj(s, t) are smoothing parameters that will need to be selected.

Equation (6) can be written in a more compact way as:

y(t) = W (t)γ + ε(t). (7)
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where γ is a vector containing all elements of C0 and Cj, and the estimator γ̂ is

γ̂ =

[∫
W ′(t)W (t)dt+R(λ)

]−1 [∫
W ′(t)y(t)dt

]
, (8)

where the definitions of W and R(λ) could be found in the Appendix. We assume that the penalty is

based on the second derivative of the functional parameters, but we could easily modify the estimator

for a different type of penalty. For each derivative, we have a smoothing parameter that puts a weight

on it. For the intercept β0(t), we only have one smoothing parameter, λ0, that penalizes its second

derivative. However, for each βj(s, t), we want to penalize its second derivative with respect to t with

λtj and its second derivative with respect to s with λts. We therefore have two smoothing parameters

per functional slope, {λtj, λsj}. As a result, we have a total of 2q + 1 smoothing parameters to select.

All the smoothing parameters can be selected based on the following LCV:

LCVreg(λ) =
N∑
i=1

∫
[yi(t)− ŷ−ii (t)]2dt, (9)

where ŷ−ii is the estimated value of yi(t) with the ith observation omitted and λ = (λ0, λs1, λt1, ..., λsq, λtq)
′.

The minimization is done by applying the Nelder-Mead simplex method to LCVreg(λ), which only re-

quires function evaluations.

What is not explicit in Equation (9) is that the LCVreg also depends on the number of bases k0, ksj

and ktj, which gives us a total of 2q + 1 integers to choose. However, we have to consider that for a

large number of bases, the system of linear equations that we need to solve in Equation (8) can become

badly conditioned or simply singular. An easier way to proceed is to set the number of bases k0, ksj’s

and kjj’s to a large number and to use a ridge-regression type of regularization. That reduces the choice

of the (2q + 1) parameters kxx’s to the choice of a single continuous regularization parameter α. The

estimator of γ becomes

γ̂ =

[∫
W ′(t)W (t)dt+R(λ) + αI

]−1 [∫
W ′(t)y(t)dt

]
, (10)
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Figure 4: LCVreg(α, λ) given λi = 10−5 ∀i

where I is the identity matrix. The cross-validation defined in Equation (9) becomes a function of λ and

α. As an estimation strategy, we propose to obtain α and λ separately because LCVreg(α, λ) is a smooth

function of α for a given λ. Using one sample from our simulation exercise below, Figure 4 shows what

the LCVreg(α, λ) function looks like for a fixed vector λ. It is therefore easy to obtain the optimal α

using an univariate minimization algorithm. The procedure is done in four steps: (i) set λ to an initial

value, λ0, and compute α0 which minimizes LCVreg(α, λ0), (ii) compute λ1 by minimizing LCVreg(α0, λ),

(iii) recompute a final α, α̂, for λ = λ1, and (iv) compute the final λ̂ by minimizing LCVreg(α̂, λ)6.

3 Monte Carlo Experiment

In this section, we analyze the properties of the multi-covariate functional regression in terms of its ability

to recover βj’s. For the latter, we compare the properties of β̂j obtained from the functional regression

6The purpose of the algorithm is to reduce the computational complexity of minimizing LCVreg. This approach is

closely related to the Coordinate Descent algorithm (Cf. Wright (2015)). The choice of stopping after two iterations is to

speed up the Monte Carlo experiment. Also, we did not find much improvement by increasing the number of iterations.
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approach versus the ordinary least square (OLS) estimator. In particular, we want to use a DGP

that produces zeros and see how the functional regression approach that incorporates all observations

compares to using OLS, which by implication drops observations with zeros.

The DGP is defined as:

y∗i (t) = β0(t) +

∫ 2

1

β1(s, t)xi1(s)ds+

∫ 2

1

β2(s, t)x∗i2(s)ds+ εi(t). (11)

We let β1(s, t) = s× t and β2(s, t) = exp(sin(s + t)). Also, xi1(s) = Ui × s, where Ui’s are drawn from

an independent uniform random variable from 0 to 1. x∗i2(s) = Vi + (s − 1.5)2, where Vi’s are drawn

from an independent uniform random variable from c1 to c2. εi(t)’s are independent standard normal

random variables. We adjust c1 and c2 to control the censoring level of x2 := x∗21{x∗2 > 0} and β0 for

the censoring level of y := y∗1{y∗ > 0}.

We calibrate the distribution of Vi to have a level of censoring of x∗2 between [αlx, α
u
x]. Since (s−1.5)2 ∈

[0, 0.25], c1 and c2 must be such that F (0) = αux and F (−0.25) = αlx. We therefore have:

c1 = − 0.25αux
αux − αlx

and

c2 =
0.25(1− αux)

αux − αlx
.

Therefore, for censoring from 10% to 30%, we must have Vi ∼ U(−0.375, 0.875). We can rewrite the

process as

yi(t)
∗ = β0 +

7

3
Uit+ ViI1(t) + I2(t) + εi(t),

where

I1(t) =

∫ 2

1

exp(sin(s+ t))ds

and

I2(t) =

∫ 2

1

exp(sin(s+ t))(s− 1.5)2ds.
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Figure 6: Fitted functional data y(t) when re-
stricting the curves to be positive

To control the censoring level of y∗, we just do this numerically. We generate 200,000 y∗i (t) for a

grid of 100 t from 1 to 2. By setting β0 to -0.8, the censoring goes from 16% to 24%. 7 Figures 5 to 8

compare the fitted functional data when we assume they are strictly positive and when we do not. On

Figures 5 and 7, we observe that the estimated paths for y(t) and xi2(t) often go below zero. Figures 6

and 8 show the impact of restricting them to be strictly positive. We do not show the result for xi1(t)

because x1 is strictly positive by construction.

For the simulation, we generated 5,000 samples, with N = 300 and T = 5. We choose this pair

of N and T to match the dimensions of the real data set we will work on in the next empirical study

section. In order to examine the effect of dropping the observations with zeros, for each sample we fitted

strictly positive functional data using the whole sample, and regular functional data on the sub-sample

containing strictly positive observations. Once all 5,000 sets of functional data were fitted, we estimated

model (11) with and without the zeros, using the estimating procedure described in Section 2.2.

We are first interested in the properties of β̂0, β̂1 and β̂2 and compare them with the OLS estimate

of the regression

ȳi = α0 + α1x̄1i + α2x̄2i + εi (12)

7All estimations and plots are done using the funcreg package, which is available on R-Forge.
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Figure 8: Fitted functional data x2(t) when
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We want to have measures comparable from the functional regressions to the αj’s in Equation (12).

Suppose that the interval over which we are integrating is [1, 5]. In Equation (11), the interpretation of∫ 5

1
βj(s, t)ds is the effect on y(t) of ∆xj(s) = 1 for all s, which implies ∆x̄j = 1. We can therefore write

∆y(t) =

∫ 5

1

βj(s, t)ds∆x̄j,

which implies

1

4

∫ 5

1

∆y(t) ≡ ∆ȳ =
1

4

∫ 5

1

∫ 5

1

βj(s, t)∆x̄j.

Therefore αj in Equation (12) corresponds to 1
4

∫ 5

1

∫ 5

1
βj(s, t)dsdt in Equation (11). In general, if the

range of integration is [t1, t2], then αj correspond to 1
(t2−t1)

∫ t2
t1

∫ t2
t1
βj(s, t)dsdt.

Tables 1 and 2 present summary statistics of the estimates for the functional regression with the

zero observations (as though son or father has at least one zero in one of the years) omitted and with

the whole sample using the nonlinear functional data. Tables 3 and 4, present the same statistics for

the OLS. Since we are not taking the logarithm in the simulations, we look at the properties of OLS

when we ignore the presence of zeros and compute ȳi, x̄1i and x̄2i using the whole sample. The last two

columns are the lower and upper 95% empirical confidence interval. Examining Tables 1 and 2 first,

when all observations are used (Table 1) mean and median bias are smaller for β̂0, β̂1 and β̂2 than when
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they are dropped (Table 2). The root-mean-square error (RMSE) is also smaller and the estimates are

estimated more precisely when all data observations are included (Table 1). The estimates for the slope

parameters, β̂1 and β̂2 are within the 95% confidence intervals for the true parameters in Tables 1 and

2 although the estimates in Table 1 are preferred given their smaller bias. Note, β̂0 in Table 1 is outside

the 95% confidence interval reflecting the fact that estimation of the level might not be not credible due

to censoring without further structural assumptions, which we try avoid. Nevertheless, in most of the

cases, researchers are more interested in the slope functions.

Examining Tables 3 and 4, mean and median bias of the parameter estimates for β̂0, β̂1 and β̂2 are

also smaller when all observations are used with OLS (Table 3) as opposed to when observations of zero

are dropped (Table 4). RMSE and the standard deviations are also smaller when all observations are

included in the estimates. However, in Table 3, when all of the observations are included, the estimates of

both β̂0 and β̂1 lie outside a 95% confidence interval; this same result occurs in Table 4 when observations

of zero are dropped. Thus, OLS appears to perform less well in providing accurate estimates of the true

parameters in these simulations. The badly biased slope parameters are a particular concern.

True Mean-Bias Median Bias RMSE S-dev Lower-Conf upper-Conf

β̂0 -0.8000 0.3732 0.3746 0.3787 0.0641 -0.5524 -0.3011

β̂1 2.2500 0.0167 0.0455 0.1511 0.1502 1.9724 2.5610

β̂2 1.2210 -0.1045 -0.1048 0.1382 0.0905 0.9392 1.2939

Table 1: Estimated average coefficients by functional regression when all observations are included

True Mean-Bias Median Bias RMSE S-dev Lower-Conf upper-Conf

β̂0 -0.8000 0.4654 0.4670 0.5212 0.2346 -0.7944 0.1253

β̂1 2.2500 -0.2254 -0.2336 0.4992 0.4454 1.1515 2.8976

β̂2 1.2210 -0.1257 -0.1289 0.2022 0.1583 0.7850 1.4056

Table 2: Estimated average coefficients by functional regression when observations with zeros are
dropped

For the Monte Carlo simulations, it is also possible to provide confidence surfaces for β̂1(s, t) and

β̂2(s, t) relative to the true parameters. A detailed discussion of the construction of the surfaces through

the concept of depth is provided in Appendix Section A.2. Figures 9 and 10 provide graphs of these

relationships using the two data sets from the Monte Carlo analysis either omitting zeros or not. Figure
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True Mean-Bias Median Bias RMSE S-dev Lower-Conf upper-Conf

β̂0 -0.8000 0.3880 0.3885 0.3930 0.0626 -0.5346 -0.2893

β̂1 2.2500 -0.2450 -0.2446 0.2521 0.0594 1.8885 2.1214

β̂2 1.2210 -0.1373 -0.1375 0.1615 0.0851 0.9170 1.2505

Table 3: Estimated average coefficients by OLS when all observations are included

True Mean-Bias Median Bias RMSE S-dev Lower-Conf upper-Conf

β̂0 -0.8000 0.4630 0.4643 0.4887 0.1563 -0.6434 -0.0305

β̂1 2.2500 -0.2399 -0.2410 0.2641 0.1105 1.7935 2.2267

β̂2 1.2210 -0.1504 -0.1535 0.2156 0.1544 0.7679 1.3733

Table 4: Estimated average coefficients by OLS when observations with zeros are dropped

9 and 10 show the true value of β1(s, t) in the horizontal plane at 2.25. The surfaces above and below

the true plane provide a visual representation of the 95% confidence interval in this space. Figure 11

and 12 provide a similar plot for the true value of β2(s, t) shown in the horizontal plane at 1.22 while the

surfaces above and below it provide a visual representation of the confidence surfaces in this parameter

space. That the plane representing the true values of the parameters lie between the upper and lower

confidence surfaces provides further evidence the estimator performs well in instances of small T and N.

4 A Functional Regression Approach to Intergenerational Mo-

bility in Earnings of Sons and Fathers

Studies in what can reasonably be considered the early literature on intergenerational economic mobility

were based on cross-sectional data and short panels (Cf. Becker and Tomes (1986, Table 22)). Those

estimates often focused on estimation of the intergenerational correlation in earnings between sons and

fathers and ranged from about 0.2 to 0.4. The conceptual problem with reliance on cross-sectional data

to estimate a relationship between the permanent or long-run economic status of two generations is

that the available data for fathers and sons only represents a single point in time and the observation is

subject to measurement error. Thus, there is a difference in the observation of earnings at a point in time

and measures which gauge status over time that might be considered more typical of life experiences
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Figure 9: Simulated results with zeros omitted
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Figure 10: Simulated results with all observa-
tions
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Figure 11: Simulated results with all with zeros
omitted
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tions

17



than a static snapshot drawn from a single observation.

This insight led to the work of Solon (1992) and Zimmerman (1992) who modeled the difference

between permanent latent variables and observed quantities as falling into a classic errors-in-variables

model.8 The impact of the bias is shown in this model to reduce estimated intergenerational relationships

between earnings of two generations. If errors in this model are independent and identical, then averaging

observations over time yields a less noisy measure of permanent earnings. As the true parameter relating

son’s and father’s earnings is biased by a signal to noise ratio, averaging observations reduces the noise

relative to signal and should increase estimated elasticities and correlations in earnings. In both Solon

and Zimmerman’s work, it can be shown that using their samples, as earnings are averaged across

successive years for fathers the intergenerational correlation in earnings rises towards the upper end of

the range observed by Becker and Tomes (1986) in the prior literature.

In selecting the data for their studies (Solon (1992) and Zimmerman (1992)) pairs of fathers and sons

with values of earnings below a certain threshold for any of the time periods used in the calculations were

omitted or similarly, sample members were required to be fully employed. In part, these adjustments to

the data address the problem of the natural logarithm of zero being undefined.

Conceptually, when longer periods of data are used and individuals are attrited if their income goes

below a threshold, the question arises of whether the resulting estimates that arise are driven by to the

increasingly restrictive sample criteria as additional informational demands are imposed on the selection

rule for an individual to enter the estimates. Couch and Lillard (1998) use the same sources of panel

data as the two prior studies which argued the larger correlations in earnings were due to omitted

variable bias, and demonstrate that when sample observations are not omitted due to low earnings or

intermittent employment, that estimates of the intergenerational elasticity and correlation in earnings

do not rise as averages of earnings are carried out over additional years of observations. The work of

Freeman (1981) and others contain similar findings in that when earnings observations are not screened,

measures of intergenerational relationships in earnings are indicative of more mobility. While the work

8Slightly earlier work which used multiple years of observations from panel data to measure intergenerational correla-

tions in economic status and drew similar qualitative conclusions can be found in Altonji and Dunn (1991)
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of Couch and Lillard (1998) as well as the results from other studies that have not screened out low

earnings observations points towards the potential usefulness of different approaches to the widely used

estimation procedure for gauging intergenerational correlations and elasticities in earnings, the solution

offered there, to add $1 to each observation and proceed with the method proposed in the work of Solon

(1992) and Zimmerman (1992), it is not well grounded theoretically.

One possible approach to resolving this issue is demonstrated in the work of Haider and Solon

(2006). Pairwise estimates of Tobits can be estimated assuming a bivariate normal density.9 The

resulting estimates can be used in a Minimum Distance framework to infer cross-period correlations

in residual earnings. A concern with this approach is potential bias imposed by the structure of the

assumptions made to support the estimation procedure.

Here, we apply the functional regression approach to estimate the intergenerational elasticity of

earnings using the PSID. The data includes 309 fathers and sons over 5 periods (1967 to 1971 for the

fathers and 1983 to 1987 for the sons). The proportion of the sample that would be omitted if all father

and son pairs that contain at least one zero were dropped is 18%. The discrete model is

ȳs = β0 + β1ȳf + β2Āf + β3Ā
2
f + β4Ās + β5Ā

2
s + u, (13)

where ȳs and ȳf are the log average of sons and fathers earnings. To compare with previous studies,

we show in Table 5 the estimates of the intergenerational elasticity in earnings using the approaches

of Solon (1992) and Couch and Lillard (1998). In the first case, observations where either a father or

son had an observation of zero are omitted and in the second, zeros are replaced by ones. For each

method, we estimate the model with and without the age-squared variables because their coefficients

are not statistically significant at the 5% level. We can see that including all observations and replacing

zeros with ones substantially reduces the estimated elasticity, the parameter estimate associated with

ȳf which implies higher intergenerational mobility.

For the functional regression approach, we estimated the intergenerational elasticity using the fol-

9This method is also used in a different context in Couch et al. (1999).
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Solon-92 Solon-92(2) Couch-Lillard-98 Couch-Lillard-98(2)
(Intercept) 2.6507 4.1894∗∗∗ 17.5934 7.4717∗∗∗

(6.2056) (0.7888) (15.5978) (1.4172)
ȳf 0.4333∗∗∗ 0.4337∗∗∗ 0.1765∗ 0.1605∗

(0.0624) (0.0607) (0.0693) (0.0682)
Āf −0.0064 −0.0081 0.1497 0.0027

(0.0554) (0.0055) (0.1255) (0.0133)
Ā2
f −0.0000 −0.0016

(0.0006) (0.0013)
Ās 0.1330 0.0319 −0.4463 0.0173

(0.4061) (0.0167) (1.0124) (0.0408)
Ā2
s −0.0016 0.0076

(0.0064) (0.0160)
Adj. R2 0.1740 0.1804 0.0106 0.0111
Num. obs. 254 254 302 302
RMSE 0.5777 0.5754 1.5711 1.5707
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 5: OLS estimates of the intergenerational mobility

lowing model:

yis(t) =β0 +

∫ 5.5

0.5

β1(s, t)yif (s)ds+

∫ 5.5

0.5

β2(s, t)Aif (s)ds+

∫ 5.5

0.5

β3(s, t)A2
if (s)ds

+

∫ 5.5

0.5

β4(s, t)Ais(s)ds+

∫ 5.5

0.5

β5(s, t)A2
is(s)ds+ εi(t).

(14)

Here, the time range of our panel is normalized to [1, 5], but we want each observation to span the same

time interval so all functional data and functional coefficients are defined over the range [0.5, 5.5]. For

example, the first time unit is considered to be the average earnings over the time interval [0.5, 1.5].

We assume in the following that the intercept is constant. Having a time dependent intercept did not

change the result; however, making it a constant simplified the estimation. Results with time varying

intercept are available upon request.

In Equation (14), the formula for the average elasticity that we want to compare with the ones from

Table 5 is 1
5

∫ ∫
β̂1(s, t)dsdt. Table 6 shows its estimated value for four cases. In the first two columns

of estimates (Model 1 and 2), we omitted all observations with zeros as in Solon (1992) and in the last

two, we used the whole sample. The addition of age-squared has very little impact on the results. As we
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would expect, removing the zeros increases the standard errors of the parameter estimates. As far as the

estimate of the intergenerational elasticity of earnings is concerned, we get very similar results to those

based on OLS when we omit the zeros. Including the zeros, however, in conjunction with functional

regression reduces the estimate and its standard error, which is consistent with our simulation results.

The estimated elasticities in Models 3 and 4 lie between those obtained ignoring zeros or setting them

to one in Table 5. By setting the zeros to one, Couch and Lillard (1998) may have underestimated

the intergenerational correlation. We can show that the estimated elasticity increases if the zeros are

replaced by a value greater than one. Since the value used to replace the zeros is somewhat arbitrary,

our method offers a data driven approach.

Figures 13 to 18 shows the estimated β1(s, t), β1(t) =
∫
β1(s, t)ds) and β1(s) =

∫
β1(s, t)dt) including

and excluding the observations with zeros. If we compare the cases with and without the zeros, the

shape of the curves are similar, but there is a clear gain of using the whole sample in terms of efficiency.

Our approach also gives a more complete understanding of the correlation between fathers and sons.

If we look at Figure 13 or 14, for example, we see that the surface is declining in the direction of s,

the time dimension for fathers. It is therefore the father’s earnings in early stage of his life that is the

most correlated with son’s earnings. Figure 15 or 16 shows that the average effect over the son’s life is

increasing; figure 17 or 18 shows, however, that the correlation is declining with the father’s age and

this decline is significant.

5 Conclusion

In this paper, we extend the functional regression with functional response method of Ramsay and

Silverman (2005) to the case of multiple functional regressors. We also offer an alternative approach

when observations contains zeros and the data have to be expressed in logarithms. The Monte Carlo

experiment suggests that the method performs relatively well in comparison to OLS in terms of its

ability to identify the functional parameters. The simulation also shows that our way of dealing with

the zeros produces less biased and more efficient estimates. We then apply our method to measure
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Model 1 Model 2 Model 3 Model 4
Intercept 2.1101∗∗∗ 3.1659∗∗∗ 0.6145∗∗∗ 4.2966∗∗∗

(0.6019) (0.0915) (0.1750) (0.0932)
F 0.4454∗∗∗ 0.4470∗∗∗ 0.3479∗∗∗ 0.3357∗∗∗

(0.0315) (0.0310) (0.0257) (0.0254)
FA −0.0029 −0.0080∗∗ 0.0113∗ −0.0033

(0.0280) (0.0028) (0.0054) (0.0029)
SA 0.0129 0.0322∗∗∗ 0.0545∗∗ 0.0216∗

(0.0398) (0.0084) (0.0187) (0.0091)
FA2 0.0001 −0.0007∗

(0.0003) (0.0003)
SA2 −0.0013 −0.0048∗∗∗

(0.0031) (0.0015)
Cross-Val. 501.4828 495.5293 1397.5486 1288.7777
Num. obs. 254 254 297 297
∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

Table 6: Functional regression estimates of the intergenerational mobility
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Figure 17: Estimated β1(s) ≡
∫
β1(s, t)dt with

zeros omitted
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intergenerational mobility using a panel from the PSID. The method offers a way to better analyze

the elasticity between fathers’ earnings at any point in time and sons’s earnings. It also offers a non-

parametric and data-driven method for dealing with the zeros instead of simply replacing them with an

arbitrary value. The elasticity that we estimate is located between the one obtained by Solon (1992)

and Haider and Solon (2006) an the one obtain by Couch and Lillard (1998).
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Appendix

A Derivation of the functional regression

A.1 Estimation

To write the system in matrix form, first define the following matrices:

Bj =

∫
φxj(s)φ

′
sj(s)ds

Hji = C ′xijBj

Then, the system can be written as:

yi(t) = φ′0(t)C0 +

q∑
j=1

[
φ′tj(t)C

′
jH
′
ji

]
+ εi(t)

= φ′0(t)C0 +

q∑
j=1

[
φ′tj(t)⊗Hji

]
V ec(C ′j) + εi(t)

recognizing that the matrix Hji contains the slope parameters. Let y(t) and ε(t) be n × 1 functional

vectors, then correspondingly,

Hj =



C ′x1jBj

C ′x2jBj

...

C ′xNj
Bj


≡ C ′xjBj.

Let ι be a N × 1 vector of ones, γ = {C ′0, V ec(C ′1)′, · · · , V ec(C ′q)′}′, and construct

W (t) =

(
[ι⊗ φ′0(t)] [φ′t1(t)⊗H1] [φ′t2(t)⊗H2] · · · [φ′tq(t)⊗Hq]

)
.

Then we can rewrite the system as:

y(t) = W (t)γ + ε(t).
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The vector of coefficients γ can be estimated by minimizing the sum of squared errors plus a penalty

function:

SSE =

∫
ε′(t)ε(t)dt+

q∑
l=0

Pl,

where the penalties Pl are defined as:

P0 = λ0

∫
(L0β0(t))2dt

for β0(t).

Pj = λsj

∫ ∫
(Lsjβj(s, t))

2dsdt+ λtj

∫ ∫
(Ltjβj(s, t))

2dsdt

for βj(s, t), where L0, Lsj and Ltj are linear differential operators. We can rewrite these penalties in

matrix form as follows:

P0 = λ0

∫
(L0β0(t))2dt = λ0C

′
0

[∫
[L0φ0(t)][L0φ0(t)]′dt

]
C0 = λ0[C ′0R0C0] ≡ C ′0R0(λ0)C0

To construct βj(s, t)’s penalty, define the following terms:

βjtt =

∫
φj(t)φ

′
j(t)dt,

βjss =

∫
φj(s)φ

′
j(s)ds,

Rsj =

∫
[Lsjφsj(s)][Lsjφsj(s)]

′ds,

and

Rtj =

∫
[Ltjφtj(t)][Ltjφtj(t)]

′dt.
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Then

Pj = λsj

∫ ∫
(Lsβj(s, t))

2dsdt+ λtj

∫ ∫
(Ltβj(s, t))

2dsdt

= V ec(Cj)
′
{
λsj[Rsj ⊗ βjtt] + λtj[βjss ⊗Rtj]

}
V ec(Cj)

= V ec(Cj)
′Rj(λsj, λtj)V ec(Cj)

The whole penalty term can therefore be written as:

q∑
l=0

Pl = γ′R(λ)γ

where the bloc diagonal matrix R(λ) appears as

R(λ) =



R0(λ0) 0 0 · · · 0

0 R1(λ1s, λ1t) 0 · · · 0

...
...

...
. . .

...

0 0 0 0 Rq(λqs, λqt)


.

We want to solve (the dependence of R on λ is removed for clarity)

γ̂ = arg min
γ

SSE =

∫
y′(t)y(t)dt− 2γ′

[∫
W ′(t)y(t)dt

]
+ γ′

[∫
W ′(t)W (t)dt+R

]
γ.

The solution is:

γ̂ =

[∫
W ′(t)W (t)dt+R

]−1 [∫
W ′(t)y(t)dt

]
.
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The term [
∫
W ′(t)W (t)dt] can be computed as follows:

[∫
W ′(t)W (t)dt

]
11

=

∫
[ι′ ⊗ φ0(t)][ι⊗ φ′0(t)]dt

=

∫
[ι′ι⊗ φ0(t)φ′0(t)]dt

= N

∫
φ0(t)φ′0(t)]dt,

[∫
W ′(t)W (t)dt

]
1j

=

∫
[ι′ ⊗ φ0(t)][φ′tj(t)⊗Hj]dt

=

∫
[ι′Hj ⊗ φ0(t)φ′tj(t)]dt

= [ι′Hj]

∫
φ0(t)φ′tj(t)]dt for j > 1,

and

[∫
W ′(t)W (t)dt

]
ij

=

∫
[φti(t)⊗H ′i][φ′tj(t)⊗Hj]dt

=

∫
[H ′iHj ⊗ φti(t)φ′tj(t)]dt

= [H ′iHj]⊗
∫
φti(t)φ

′
tj(t)dt for i, j > 1.

A.2 Construction of the confidence surfaces

In order to analyze the performance of our method, we construct functional confidence bands based

on the functions’ depth. In particular, we use the modified band depth measure (MBD) proposed by

López-Pintado and Romo (2009). Depth measures allow to order functions and construct functional

box-plots as it is well described by Sun and Genton (2011). In particular, a functional box-plot allows

us to detect outliers among the estimated curves, which, in our case, may be a sign of convergence
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Figure 20: Functional Box-Plot for β̂2(s) after
re-estimating the outliers

problems while estimating the optimal smoothing parameters.

In the case of random functions, we can have magnitude or shape outliers. We are more likely to

encounter the latter when the smoothing parameters are not properly chosen as we can see in Figure 19.

In that case, 665 out of 5, 000 models were re-estimated because the smoothing parameters were clearly

too small, given the shape of the outliers. The result is shown in Figure 20.

A function depth is a measure of where the function stands with respect to the median curve. The

curve with the highest depth is therefore the median. The MBD measure is the point-wise proportion

that a curve lies between all pairs of curves. Although Sun and Genton (2011) only illustrate the case

of two-dimensional functions, it is straightforward to generalize it to functions with higher dimensions.

Once the depth measure is obtained for all curves, the 95% confidence band is obtained by computing

the sup and inf of 95% of all curves with the highest depth. Since we have 5, 000 replication in our

simulations, we computed the sup and the inf of the 4, 750 estimated curves with the highest depth.
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