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Abstract5

We study four different climate change games and compare with the outcome of6

choices by a Social Planner. In a dynamic setting, two players choose levels of carbon7

emissions. Rising atmospheric carbon stocks increase average global temperature which8

damages player utilities. Temperature is modelled as a stochastic differential equation.9

We contrast the results of a Stackelberg game with a game in which both players as10

leaders (a Leader-Leader or Trumpian game). We also examine an Interleaved game11

where there is a significant time interval between player decisions. Finally we examine12

a game where a Nash equilibrium is chosen if it exists, and otherwise a Stackelberg13

game is played. One or both players may be better off in these alternative games14

compared to the Stackelberg game, depending on state variables. We conclude that it15

is important to consider alternate game structures in examining strategic interactions16

in pollution games. We also demonstrate that the Stackelberg game is the limit of the17

Interleaved game as the time between decisions goes to zero.18
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1 Introduction19

Many of the world’s serious environmental problems can be described in terms of a tragedy20

of the commons whereby individual agents ignore the effect of their own actions on the state21

of particular natural assets, whether fish or forest stocks or the resilience of the world’s22

ecosystems. The tragedy of the commons can only be alleviated by some sort of collective23

action, whether through government regulatory measures or through informal activities such24

as moral suasion at the community level. The effectiveness of actions to thwart the tragedy25

of the commons will depend on individual circumstances of each situation, including the26

strength of the incentives for individual agents to act strategically to further their own27

interests at the expense of the common good.28

Strategic incentives related to the tragedy of the commons have long been studied in29

the literature using models of differential games, mostly in a deterministic setting. Long30

(2010) and Dockner et al. (2000) provide surveys of this large literature. Some notable31

contributions include Dockner & Long (1993), Zagonari (1998), Wirl (2011), List & Mason32

(2001). Papers tacking pollution games in a stochastic setting include Xepapadeas (1998),33

Nkuiya (2015), Wirl (2006). Key questions addressed are conditions for the existence of34

Nash equilibria, whether players are better off with cooperative behaviour, and the steady35

state level of pollution under cooperative versus non-cooperative games. Linear quadratic36

games in which utility is a quadratic function of the state variable and the state variable is37

linear in the control, have been used extensively as these permit a closed form solution for38

certain types of problems. A leading edge of the literature studies problems which include39

a more robust characterization of uncertainty and game characteristics such that optimal40

player controls may depend on state variables and are not restricted in terms of permitted41

strategies.42

Economic models of climate change have been sharply criticized in recent years for their43

arbitrary assumptions regarding the costs of climate change and inadequate accounting of44

the uncertainly over how quickly the earth’s climate will change and how human society45

might adapt. Pindyck (2013) is a good example of this critique. In the earlier literature,46
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uncertainty was typically been addressed through sensitivity analysis or Monte Carlo simula-47

tion. A developing literature uses more sophisticated approaches, in particular by depicting48

optimal choices in fully dynamic models with explicit characterization of uncertainty in key49

state variables. Chesney, Lasserre & Troja (2017) examine optimal climate policies when50

temperature is stochastic and there is a known temperature threshold which will cause dis-51

astrous consequences if exceeded for a prolonged period of time. Other recent papers which52

incorporate stochasticity into one or more state variables include Crost & Traeger (2014),53

Ackerman, Stanton & Bueno (2013), Traeger (2014), Hambel, Kraft & Schwartz (2017).54

Bressan (2011) provides an excellent summary of the specification and solution of non-55

cooperative differential games. He shows that in cases where the state variables evolve56

according to an Ito process with drift depending on player controls, value functions can be57

found by solving a Cauchy problem for a system of parabolic equations. The Cauchy problem58

is well posed if the diffusion tensor has full rank. We note that in the model studied in this59

paper, the diffusion tensor is not of full rank, and hence we cannot necessarily expect Nash60

equilibria to exist.61

Insley, Snoddon & Forsyth (2018) develop a sequential pollution game model to address62

the specific circumstances of climate change. The model depicts two players, each being63

a large contributor to global carbon emissions. Players emit carbon in order to generate64

income, thereby increasing the atmospheric stock of carbon. Rising carbon stocks increase65

the average global temperature, which is modelled as an Ito process to reflect the inherent66

uncertainty associated with temperature. Players choose emissions in a repeated Stackelberg67

game. The game occurs every two years, at which time the leader and follower choose their68

optimal emission level, with the follower choosing immediately after the leader. There is no69

closed form solution to this game. A numerical approach is presented, based on the solution70

of a Hamilton-Jacobi-Bellman (HJB) equation.71

The results of Insley, Snoddon & Forsyth (2018) indicated a classic tragedy of the com-72

mons whereby player utility is lower than would be achieved by a Social Planner seeking to73

maximize the sum of player utilities. Players in the game choose emission levels that are74
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too high relative the levels chosen by a Social Planner. The paper also demonstrates the75

importance of temperature volatility and asymmetric damages and preferences on optimal76

choices. Insley, Snoddon & Forsyth (2018) do not impose the requirement that optimal77

strategies represent Nash equilibria. However it is possible to check for the existence of Nash78

equilibrium at every time step for all possible values of the state variables. This is done in79

the numerical example, and is reported in the paper.80

The Stackelberg game has the advantage that a solution will always exist, even though81

the chosen optimal controls may not represent Nash equilibria. However it is reasonable82

to ask whether the Stackelberg game is the most appropriate for modelling climate change83

and other pollution games. The purpose of this paper is to examine other types of games84

that might be of interest in studying a pollution game. We focus, in particular on three85

alternatives and compare to the Stackelberg game, which we refer to as the base case. First86

we consider a case where both players act as leaders. In a normal Stackelberg game the87

leader chooses optimal emissions with the knowledge of how the follower will respond (via88

the follower’s best response function). However it seems reasonable to ask what would89

happen if each player acts as a leader, mistakenly assuming the other player will respond90

rationally as a follower. We call this game the Leader-Leader or Trumpian scenario. To91

preview results, we find that in the Trumpian game, true leader (i.e. the one choosing first92

at time zero) is worse off than the leader in the Stackelberg game. The true follower (the93

player choosing second at time zero)in the Trump game is worse off than in the Stackelberg94

over most values of the state variables, but for certain low values of the carbon stock state95

variable, the follower can be better off in a Trumpian game.96

In our second game variation, we focus on the time lag between the leader and follower97

decisions. In a case we refer to as the Interleaved game, we assume that players take turns98

choosing their optimal control, and there is a significant time interval between decisions.99

This reflects the reality that in the real world, policy decisions to change carbon emissions100

may take time. Again to preview our results, we find that for a medium size gap between101

decisions, total utility improves compared to the Stackelberg game. However, when the gap102
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between decisions gets too large, all players are worse off.103

Overall our results for the Trumpian and Interleaved games imply that if players could104

choose other games rather than the simple Stackelberg games, it may be in their interests to105

do so. We hope these results will lead to further research on decision timing and game type106

which will inform our understanding of strategic interactions in real world pollution games.107

As noted, a focus of the pollution game literature is the characterization of Nash equilib-108

ria. To provide a comparison of the outcomes of Nash and Stackelberg controls, we examine a109

third game variation whereby players choose the Nash equilibrium if it exists, and otherwise110

revert to the optimal controls from the Stackelberg game. We refer to this case as Nash-if-111

Possible (or NIP). Note that about 60 percent of optimal choices in the Stackelberg game112

represent Nash equilibria. Our results show that the NIP and base cases are in general quite113

close in terms of utilities and strategies. The follower is better off in the NIP game than in114

the base case (pure Stackelberg game.) The leader may be better or worse off, depending on115

the state variables (carbon stock and temperature). Overall, however, total utility is higher116

under the NIP game given state variables in ranges closest to current day values.117

2 Problem Formulation118

This section provides an broad overview of the climate change game, which will be modelled119

using three different depictions of the strategic interactions of decision makers. Details of the120

specific games are provided in Section 3. Details of functional forms and parameter values121

are provided in Section 4. A summary of variable names is given in Table 1. The problem122

formulation is similar to that described in Insley, Snoddon & Forsyth (2018), but is repeated123

here for completeness of the paper.124

125

The climate change game comprises two players each of which generate income by emitting126

carbon. Carbon emissions contribute to the global atmospheric stock of green house gases,127

which causes rising average global temperatures. Each player experiences damages from128
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Table 1: List of Model Variables

Variable Description

Ep(t) Emissions in region p

e1, e2 Particular realizations of Ep(t)

S(t) Stock of pollution at time t, a state variable

s A realization of S(t)

S̄ preindustrial level of carbon

ρ(t) Rate of natural removal of the pollution stock

X(t) Average global temperature, a state variable

x A realization of X(t)

X̄ long run equilibrium level of carbon temperature

Bp(t) Benefits from emissions

Cp(t) Damages from pollution

πp Flow of net benefits to region p

r Discount rate

ρ(X,S, t) removal rate of atmospheric carbon

σ temperature volatility

η(t) speed of mean reversion in temperature equation
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rising temperature which reduces income. Players seek to maximize their own utility through129

the optimal choice of per period carbon emissions, balancing the benefits from emissions with130

the costs that come from rising carbon stocks. And of course, the rate at which carbon stocks131

increase depends in part on the actions of the other player.132

For simplicity we assume that there is a one to one relation between emissions and a133

player’s income. The two players are indexed by p = 1, 2 and Ep refers to carbon emissions134

from player p. The stock of atmospheric carbon, denoted by S, is increased by emissions,135

but is also reduced by a natural cycle depicted by the function ρ(X,S, t) and referred to136

as the removal rate, where X refers to average global temperature, measured in ◦C above137

preindustrial levels and t represents time. As described in Section 4, we will drop the138

dependence on X and S, and assume that ρ is a function only of time. Carbon stock over139

time is described by the stochastic differential equation:140

dS(t)

dt
= E1 + E2 + (S̄ − S(t))ρ(X,S, t); S(0) = S0 S ∈ [smin, smax] . (1)

where S̄ is the pre-industrial equilibrium level of atmospheric carbon. Equation (1) is stochas-141

tic, in general, since the emission levels E1, E2, as well as possibly the decay factor ρ are in142

functions of stochastic state variables.143

Uncertainty in the evolution of the earth’s average temperature is described by an Orn-144

stein Uhlenbeck process:145

dX(t) = η(t)

[
X̄(S, t)−X(t)

]
dt+ σdZ. (2)

where η(t) represents the speed of mean reversion, X̄ represents the long run mean of global146

average temperature, σ is the volatility parameter, and dZ is the increment of a Wiener147

process.148

The net benefits from carbon emissions for player p, represented by πp are composed of149

the direct benefits from emissions, B(Ep, t) and the damages from increasing temperature150

7



due to a growing carbon stock, Cp(X, t):151

πp = Bp(Ep, t)− Cp(X, t) p = 1, 2; (3)

Benefits are specified in Equation (4) as a quadratic function of emissions, which is a common152

assumption in the pollution game literature,153

Bp(Ep) = aEp(t)− E2
p(t)/2, p = 1, 2; Ep ∈ [0, a], (4)

where a is a constant. Costs of damages from climate change are specified in Equation (5)154

as an exponential function of temperatur,.155

Cp(t) = κ1e
κ3X(t) p = 1, 2, (5)

where κ2 and κ3 are constants.156

It is assumed that the control (choice of emissions) is adjusted at fixed decision times157

denoted by:158

T = {t0 = 0 < t1 < ...tm... < tM = T}. (6)

Let t−m and t+m denote instants just before and after tm, with t−m = tm − ε and t+m = tm + ε,159

ε→ 0+, and where T is the time horizon of interest.160

e+
1 (E1, E2, X, S, tm) and e+

2 (E1, E2, X, S, tm) denote the controls implemented by the play-161

ers 1 and 2 respectively, which are contained within the set of admissible controls: e+
1 ∈ Z1162

and e+
2 ∈ Z2. K denotes a control set of the optimal controls for all tm.163

K =
{

(e+
1 , e

+
2 )t0=0, (e+

1 , e
+
2 )t1=1, ... , (e

+
1 , e

+
2 )tM=T

}
. (7)

In this paper we will consider five possibilities for selection of the controls (e+
1 , e

+
2 ) at t ∈ T :164

which are referred to as Stackelberg, Social Planner, Trumpian (leader-leader), Interleaved,165

and Nash-if-possible (NIP). We delay the precise specification of how these controls are166
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determined until Section 3.2.167

For any control strategy, the value function for player p, Vp(e1, e2, x, s, t) is defined as:168

Vp (e1 , e2, x, s, t) = EK
[∫ T

t′=t

e−rt
′
πp(E1(t′), E2(t′), X(t′), S(t′)) dt′ (8)

+e−r(T−t)V (E1(T ), E2(T ), X̄(T ), S(T ), T )
∣∣∣E1(t) = e1, E2(t) = e2, X(t) = x, S(t) = s

]
,

where EK [·] is the expectation under control set K. As per convention, lower case letters169

e1, e2, x, s are used to denote realizations of the state variables E1, E2, X, S. The value in the170

final time period, T , is assumed to be the present value of a perpetual stream of expected171

net benefits at a given carbon stock, S(T ), and the long run mean temperature associated172

with that carbon stock level, X̄(S(T ), T ), with chosen level of emissions. This is reflected in173

the term V (E1(T ), E2(T ), X̄(T ), S(T ), T ). The implicit assumption is that after 150 years174

the world has transitioned to green energy sources and emissions no longer contribute to the175

stock of carbon.176

3 Dynamic Programming Solution177

Equation (9) is solved backward in time according to the standard dynamic programming178

algorithm. There are two phases to the solution - for t ∈ (t−m, t
+
m) we determine the optimal179

controls, while for t ∈ (t+m, t
−
m+1), we solve the system of PDE’s that describe how the value180

function changes with the evolving stock of carbon and temperature, but for fixed values181

of the optimal controls. As a visual aid, Equation (9) shows the noted time intervals going182

forward in time,183

t−m → t+m → t−m+1 → t+m+1 . (9)

3.1 Advancing the solution from t−m+1 → t+m184

The solution proceeds going backward in time from t−m+1 → t+m. Define the differential185

operator, L for player p, in Equation (10). The arguments in the Vp function have been186
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suppressed when there is no ambiguity.187

LVp ≡
(σ)2

2

∂2Vp
∂x2

+ η(X̄ − x)
∂Vp
∂x

+ [(e1 + e2) + ρ(S̄ − s)]∂Vp
∂s
− rVp; p = 1, 2 . (10)

where r is the discount rate. Consider at time interval h < (tm+1−tm). For t ∈ (t+m, t
−
m+1−h),188

the dynamic programming principle states that (for small h),189

V (e1, e2, s, x, t) = e−rhE
[
V (E1(t), E2(t), S(t+ h), X(t+ h), t+ h)

∣∣∣ (11)

S(t) = s,X(t) = x,E1(t) = e1, E2(t) = e2

]
+ πp(e1, e2, s, x, t)h

Letting h → 0 and using Ito’s Lemma,1 the equation satisfied by the value function, Vp is190

expressed as:191

∂Vp
∂t

+ πp(e1, e2, x, s, t) + LVp = 0, p = 1, 2 . (12)

The domain of Equation (12) is (e1, e2, x, s, t) ∈ Ω∞, where Ω∞ ≡ Z1 × Z2 × [x0,∞] ×192

[S̄,∞]×[0,∞]. In principle, x0 would be zero degrees Kelvin in our units. For computational193

purposes, we truncate the domain Ω∞ to Ω, where Ω ≡ Z1×Z2× [xmin, xmax]× [smin, smax]×194

[0, T ]. T , smin, smax, Z1, Z2, xmin, and xmax are specified based on reasonable values for the195

climate change problem, and are given in Section 4.196

Remark 1 (Admissible sets Z1, Z2). We will assume in the following that Z1, Z2 are compact197

discrete sets, which would be the only realistic situation.198

1Dixit & Pindyck (1994) provide an introductory treatment of optimal decisions under uncertainty char-
acterized by an Ito process such as Equation (2). A more advanced treatment in a finance context is given
by Bjork (2009).
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Boundary conditions for the PDEs are specified below.199

x→ xmax ;
∂2Vp(e1, e2, xmax, s, t)

∂x2
= 0 (13a)

x→ xmin ; σ → 0 (13b)

s→ smax ;
∂VP
∂S

(e1 + e2)→ 0 (13c)

s→ smin ; No boundary condition needed, outgoing characteristics (13d)

t = T ; Vp = V (E1(T ), E2(T ), X̄, S(T ), T )/r (13e)

The boundary at t = T gives the terminal value as the the present value of an infinite stream200

of benefits given the long run mean temperature, X̄, associated with the particular carbon201

stock and chosen emissions levels. As is described in Section 4.3, in the numerical example202

emissions are restricted to four possible choices. Given that emissions are no longer damaging203

at time T (assuming complete carbon capture and storage), the maximum possible emission204

level is chosen for the boundary condition. Further discussion regarding these boundary205

conditions can be found in Insley, Snoddon & Forsyth (2018).206

More details of the numerical solution of the system of PDEs are provided in Appendix207

A. Suppose that the value function is decreasing in temperature at t−m+1, and that the208

benefits from emissions are always decreasing as a function of the temperature, then the209

exact value function (i.e. solution of Equation (12)) must be non-increasing in temperature210

at t+m. However, in some of our tests with extreme damage functions, this property was211

violated in the finite difference solution. In order to ensure this property holds for the finite212

difference solution, we require a mild timestep condition, as described in Appendix B.213

3.2 Advancing the solution from t+m → t−m214

Proceeding backwards in time, we find the optimal control in the interval between t+m → t−m.215

We consider several possibilities for selection of the controls (e+
1 , e

+
2 ) at t ∈ T :216

• Stackelberg;217
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• Social Planner;218

• Leader-Leader (Trumpian);219

• Interleave220

• Nash-if-Possible221

Recall that our controls are assumed to be feedback, i.e. a function of state. However, to222

avoid notational clutter in the following, we will fix (e−1 , e
−
2 , s, x, t

−
m), so that, if there is no am-223

biguity, we will write (e+
1 , e

+
2 ) which will be understood to mean (e+

1 (e−1 , e
−
2 , s, x, t

−
m), e+

2 (e−1 , e
−
2 , s, x, t

−
m)),224

where e−1 and e−2 are the state values at t−m before the control is applied.225

Given the optimal controls (e+
1 , e

+
2 ) at a point in the state space (e−1 , e

−
2 , s, x, t

−
m), the226

dynamic programming principle implies227

V1(e−1 , e
−
2 , s, x, t

−
m) = V1(e+

1 (·), e+
2 (·), s, x, t+m) ,

V2(e−1 , e
−
2 , s, x, t

−
m) = V2(e+

1 (·), e+
2 (·), s, x, t+m) . (14)

Equation (14) is used to advance the solution backwards in time t+m → t−m, for all types of228

games. We describe the specific rule for determining the optimal control pair (e+
1 , e

+
2 ) for229

each type of game in the following.230

3.2.1 Stackelberg Game231

In the case of a Stackelberg game, suppose that, in forward time, player 1 goes first, and232

then player 2. Conceptually, we can then think of the time intervals (in forward time) as233

(t−m, tm], (tm, t
+
m). Player 1 chooses control e+

1 in (t−m, tm], then player 2 chooses control e+
2 in234

(tm, t
+
m).235

We suppose at t+m, we have the value functions V1(e1, e2, s, x, t
+
m) and V2(e1, e2, s, x, t

+
m).236

Definition 1 (Response set of player 2). The best response set of player 2, R2(ω1; e2; s, x, tm)237
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is defined to be the best response of player 2 to a control ω1 of player 1.238

R2(ω1; e2; s, x, tm) = argmax
e′2∈Z2

V2(ω1, e
′
2, s, x, t

+
m) ; ω1 ∈ Z1 . (15)

Remark 2 (Tie breaking). We break ties by (i) staying at the current emission level if239

possible, or (ii) choosing the lowest emission level. Rule (i) has priority over rule (ii). The240

notation R2(·; e2; ·) shows dependence on the state e2 due to the tie breaking rule.241

Similarly, we define the best response set of player 1.242

Definition 2 (Response set of player 1). The best response set of player 1, R1(ω2; e1; s, x, tm)243

is defined to be the best response of player 1 to a control ω2 of player 2.244

R1(ω2; e1; s, x, tm) = argmax
e′1∈Z1

V1(e′1, ω2, s, x, t
+
m) ; ω2 ∈ Z2 . (16)

Ties are broken as in Remark 2. Again, to avoid notational clutter, we will fix (e1, e2, s, x, tm)245

so that we can usually write without ambiguityR1(ω2; e1) = R1(ω2; e1; s, x, tm) andR2(ω1; e2) =246

R2(ω1; e2; s, x, tm).247

Definition 3 (Stackelberg Game: Player 1 first). The optimal controls (e+
1 , e

+
2 ) assuming248

player 1 goes first are given by249

e+
1 = argmax

ω′1∈Z1

V1(ω′1, R2(ω′1; e−2 ), s, x, t+m)
∣∣∣
break ties e−1

,

e+
2 = R2(e+

1 ; e−2 ) . (17)

3.2.2 Leader-Leader (Trumpian) Game250

A leader-leader game is determined by assuming that each player (mistakenly) assumes that251

they are the leader. Somewhat tongue-in-cheek, we refer to this as a Trumpian game. The252
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Trumpian controls are determined from253

e+
1 = argmax

ω′1∈Z1

V1(ω′1, R2(ω′1; e−2 ), s, x, t+m)
∣∣∣
break ties e−1

,

e+
2 = argmax

ω′2∈Z2

V2(R1(ω′2; e−1 ), ω′2, s, x, t
+
m)
∣∣∣
break ties e−2

. (18)

3.2.3 Interleave Game254

Suppose that at decision times t2m;m = 0, 1, . . . player one chooses an optimal control, while255

player two’s control is fixed. At decision times t2m+1;m = 0, 1, . . . player two chooses an256

optimal control, while player one’s control is fixed. More precisely, at t2m257

e
(2m)+
1 = optimal control for player 1 ,

e
(2m)+
2 = e

(2m)−
2 ; player 2 control fixed . (19)

At time t(2m+1), we have258

e
(2m+1)+
1 = e

(2m+1)−
1 ; player 1 control fixed ,

e
(2m+1)+
2 = optimal control for player 2 . (20)

More details for the Interleaved game are given in Appendix D. Suppose we hold player259

one’s decision times t2m fixed, and move player two’s decision times t2m+1 to be just after260

t2m. More precisely,261

t2m = fixed ; (t2m+1 − t2m)→ 0+ . (21)

In this case, intuitively, we would expect that the result of this limiting process is a Stack-262

elberg game at times t2m, with player one being the leader, and player two the follower. We263

confirm this intuition in Proposition 3, Appendix D.264
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3.2.4 Social Planner265

For the Social Planner case, we have that an optimal pair (e+
1 , e

+
2 ) is given by266

(e+
1 , e

+
2 ) = argmax

ω1∈Z1
ω2∈Z2

{
V1(ω1, ω2, s, x, t

+
m) + V2(ω1, ω2, s, x, t

+
m)

}
. (22)

Ties are broken by (i) minimizing |V1(e+
1 , e

+
2 , s, x, t

+
m)− V2(e+

1 , e
+
2 , s, x, t

+
m)|, (ii) choosing the267

lowest emission level. Rule (i) has priority over rule (ii). In other words, the Social Planner268

picks the emissions choices which give the most equal distribution of welfare across the two269

players.270

271

3.2.5 Nash-if-Possible272

In Appendix C we describe the necessary and sufficient conditions for a Nash equilibrium273

to exist. However, in general, we have no reason to believe that Nash equilibria exist at all274

points in the state space, since the system of PDEs depicted in Equation (10) is degenerate275

(i.e. there is no diffusion in the S direction). This observation is confirmed in our numerical276

tests.277

In this third game for each possible combination of state variables e, e2, x, s, we check to278

see whether controls e+
1 and e+

2 exist that represent a Nash equilibrium as defined by the279

necessary and sufficient conditions in Equation (17). In the event that more than one set of280

controls is a Nash equilibrium, then we choose the one with the lowest total emissions level.281

If no Nash equilibrium exists then we determine controls via a Stackelberg game as defined282

in Section 3.2.1.283

4 Detailed model specification and parameter values284

The functional forms and parameter values used in this paper are the same as in Insley,285

Snoddon & Forsyth (2018). For the convenience of the reader a brief review is provided in286
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Table 2: Base Case Parameter Values

Parameter Description Equation Assigned Value

Reference

S̄ Pre-industrial atmospheric carbon stock (1) 588 Gt carbon

smin Minimum carbon stock (1) 588 Gt carbon

smax Maximum carbon stock (1) 10000 Gt carbon

ρ̄, ρ0, ρ∗ Parameters for carbon removal Equation (23) 0.0003, 0.01, 0.01

φ1, φ2, φ3 Parameters of temperature Equation (27) 0.02, 1.1817, 0.088

φ4 Forcings at CO2 doubling (25) 3.681

FEX(0) Parameters from forcing Equation (25) 0.5

FEX(100) 1

α1, α2 Ratio of the deep ocean to surface temp, 0.008, 0.0021

α(t) = α1 + α2 × t, (27)

t is time in years with 2015 set as year 0

σ Temperature volatility (27) 0.1

xmin, xmax Upper and lower limits on average temperature, ◦C (27) -3, 20

a1, a2 Parameter in benefit function, player p (4) 10

Z1, Z2 Admissible controls (7) 0, 3, 7, 10

b1,b2 Cost scaling parameter, players 1 & 2 respectively (5) 15, 15

κ1 Linear parameter in cost function for both players (5) 0.05

κ3 Term in exponential cost function for both players (5) 1

T terminal time 150 years

r risk free rate (10) 0.01

this section. Assumed parameter values are summarized in Table 2.287

288

4.1 Carbon stock details289

The evolution of the carbon stock is described in Equation (1). In our numerical example,290

we use a simplified specification of the path of carbon stock, based on Traeger (2014). We291

simplify the function describing the removal rate of carbon to be a deterministic function of292
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time, denoted by ρ(t), which approximates removal rates from the DICE 2016 model.293

ρ(t) = ρ̄+ (ρ0 − ρ̄)e−ρ
∗t (23)

ρ0 is the initial removal rate per year of atmospheric carbon, ρ̄ is a long run equilibrium rate294

of removal, and ρ∗ is the rate of change in the removal rate. Specific parameter assumptions295

for this Equation are given in Table 2. The resulting removal rate starts at 0.01 per year296

and falls to 0.0003 per year within 100 years.297

Assumptions for the preindustrial level of carbon stock, S̄, and the minimum and max-298

imum carbon stock levels, smin and smax, are provided in Table 2. S̄ is based on estimates299

used in the DICE (2016)2 model for the year 1750. smax is set at 10,000 Gt, which is well300

above the 6000 Gt carbon in Nordhaus (2013) and is not found to be a binding constraint301

in the numerical examples. A 2014 estimate of the atmospheric carbon level is 840 Gt.3302

4.2 Stochastic process temperature: details303

Equation (2) specifies the stochastic differential equation which describes temperature, X(t),304

based on the parameters η(t) and X̄(t). To relate Equation (2) to the climate change305

literature, we define these parameters as follows:306

η(t) ≡ φ1

(
φ2 + φ3(1− α(t))

)
(24)

X̄(t) ≡ F (S,t)
(φ2+φ3(1−α(t))

.

where φ1, φ2, φ3 and σ are constants.4307

2The 2013 version of the DICE model is described in Nordhaus & Sztorc (2013). GAMS
and Excel versions for the updated 2016 version are available from William Nordhaus’s website:
http://www.econ.yale.edu/ nordhaus/homepage/.

3According to the Global Carbon Project, 2014 global atmospheric CO2 concentration was 397.15 ±
0.10 ppm on average over 2014. At 2.21 Gt carbon per 1 ppm CO2, this amounts to 840 Gt car-
bon.(www.globalcarbonproject.org)

4φ1, φ2, φ3 are denoted as ξ1, ξ2, and ξ3 in Nordhaus (2013).
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F (S, t) refers to radiative forcing, where308

F (S, t) = φ4

(
ln(S(t)/S̄)

ln(2)

)
+ FEX(t) . (25)

φ4 indicates the forcing from doubling atmospheric carbon.5 FEX(t) is forcing from causes309

other than carbon and is modelled as an exogenous function of time as specified in Lemoine310

& Traeger (2014) as follows:311

FEX(t) = FEX(0) + 0.01
(
FEX(100)− FEX(0)

)
min{t, 100} (26)

Substituting the definitions of η and X̄ into Equation (2) and rearranging gives312

dX = φ1

[
F (S, t)− φ2X(t)− φ3[1− α(t)]X(t)

]
dt+ σdZ (27)

The drift term in Equation (27) is a simplified version of temperature models typical in313

Integrated Assessment Models, based on Lemoine & Traeger (2014). α(t) represents the314

ratio of the deep ocean temperature to the mean surface temperature and, for simplicity, is315

specified as a deterministic function of time.6316

The values for the parameters in Equation (27) are taken from the DICE (2016) model.317

Note that φ1 = 0.02 which is the value reported in Dice (2016) divided by five to convert318

to an annual basis from the five year time steps used in the DICE (2016) model. FEX(0)319

and FEX(100) (Equation (25)) are also from the DICE (2016) model. The ratio of the deep320

ocean temperature to surface temperature, α(t), is modelled as a linear function of time.321

4.3 Benefits and Damages322

Benefits are given as a quadratic function of emissions in Equation (4). In the numerical ex-323

ample, there are four possible emissions levels for each player Ep ∈ {0, 3, 7, 10} in gigatonnes324

(Gt) of carbon and we set a1 = a2 = 10 in Equation (4).325

5φ4 translates to Nordhaus’s η (Nordhaus & Sztorc 2013).
6We are able to get a good match to the DICE2016 results using a simple linear function of time.
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Damages are given as an exponential function of emissions in Equation (5). Assumed326

values for κ2 and κ3 are given in Table 2. We note that with this functional form, damages327

greatly exceed benefits from 3 ◦C onward. We view this exponential specification of damages328

as an alternative approach to capturing disastrous consequences, compared to adopting a329

Poisson jump process which is sometimes used in the literature.330

5 Numerical Results331

5.1 Base case: the Stackelberg game332

This section summarizes the results for the Stackelberg game which is used as the base333

case for comparison with other games. In this case, the leader and follower play a series334

of Stackelberg games at fixed decision times, set to be every two years, with the first game335

occurring at time zero. It is challenging to get a good sense of the results due to the336

numerous state variables including carbon stock, temperature, and current emission levels337

of each player. For the Stackelberg game, as noted in Section 3.2.1, the optimal control338

depends on current levels of emissions e1 and e2 only in the event of a tie. However, in the339

Interleaved case, discussed below, current emissions levels have an impact on results. We340

have chosen to present results for state variables close to current levels (1 ◦C for temperature341

and and 800 Gt for the atmospheric stock of carbon). We mention results for other values342

of state variables when this provides additional useful insight. All results are presented for343

time zero. For clarity when comparisons are made with other games, we will consistently344

refer to the leader in the Stackelberg game as Player 1 and the Follower as Player 2.345

Figure 1 shows utilities for the base case game versus the Social Planner. These represent346

expected utility at time zero if optimal controls are followed from time zero to time T, given347

the dependence of the stock of carbon on the choice of emissions and given the evolution of348

temperature, which depends on the the carbon stock as well as a random component. Figure349

1(a) plots utility versus carbon stock for a temperature of 1 ◦C, and for fixed state variables350

e1 and e2 both set at 10 Gt. We observe, as expected, that utility declines with carbon351
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stock. The Social Planner case yields significantly higher utility, confirming a tragedy of the352

commons as an important feature of the Stackelberg game. Individual player utilities are353

also depicted. The leader achieves higher utility than the follower, showing that there is a354

benefit to being the first mover in this repeated game. At 1 ◦C the first mover advantage is355

about 10 percent, falling to zero above 5 ◦C. Results are depicted only for the state variable356

set at 1 ◦C, but a similar pattern emerges for other temperature levels, except that higher357

temperatures shift the utility curves downward.358

Figure 1(b) depicts how utility changes with temperature, this time with the state variable359

carbon stock set at 800 Gt. (e1 and e2 are again set at 10 Gt, but this is immaterial in the360

Stackelberg case.) As expected, utility declines monotonically with increasing temperature.361

Again, a similar pattern emerges for plots with the stock of carbon set at different utilities,362

but to reduce clutter we show these graphs only for S = 800.363
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Figure 1: Utilities versus carbon stock and temperature for base Stackelberg game and
Social Planner, time = 0, state variables E1 = 10, E2 = 10. Temperature is in ◦C above
preindustrial levels.

Figure 2 compares emissions optimal choices at time zero over a range of carbon stock364

levels when the temperature is fixed at 1 ◦C (upper two graphs) and 4 ◦C (bottom two365

graphs). In Figure 2(a) and 2(c) we see that the Social Planner chooses lower emissions366
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over most carbon stock levels compared to the total that results from the Stackelberg game.367

When the current temperature is at the higher level (Figure 2(c)) emissions are cut back at368

a lower carbon stock levels for both the game and the planner. The diagrams on the right369

side show that the players have largely the same strategy at time zero. In Figure 2(b) there370

is some see-sawing in player 1 emissions over the range S = 1700 to 1900. Over this range,371

player utilities at emission levels of 7 or 3 GT of carbon are very close together - within one372

percent. Given the accuracy of the numerical computation, player 1 is essentially indifferent373

between emissions of 3 or 7 at these points in the state space.374

5.2 A Trumpian Game375

We now contrast the Stackelberg game with the Leader-Leader (Trumpian) game, in which376

both players consider themselves to be the leaders in the game. Each chooses her actions377

assuming incorrectly that the other player will respond according to a rational best response378

function. (See Section 3.2.2.) In the Trump game both Player 1 and Player 2 act as leaders.379

A comparison of utilities of the Trumpian and Stackelberg (base) games, and the Social380

Planner is given in Figure 3. The comparison shows utility versus temperature at time381

zero, for a fixed carbon stock s = 800 Gt. We observe in Figure 3(a) that the Trump game382

yields lower total utility than the base case Stackelberg game. The reduction is about 5%383

at a temperature of 1 ◦C, declining to zero above 5 ◦C. Figure 3(b) presents the results for384

individual players. Since players are identical and both are playing as leaders, both receive385

the same utilities in the Trump game. We observe Player 1 loses in this game, experiencing386

a significant reduction in utility (about 10 percent at 1 ◦C, falling to zero beyond 7 ◦C)387

compared to the Stackelberg game. Player 2 in the Trump game has a utility level that is388

fairly close to what is received in the Stackelberg game (1.5 percent higher in the Trump389

case at 1 ◦C). At higher temperature level, the relative benefit to Player 2 in the Trump case390

increases to 4 percent before declining to zero beyond 5 ◦C. Note that at higher levels of the391

carbon stock (not shown), both players are worse off in the Trump game. Under the Social392

Planner case both players receive higher utilities.393
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Figure 2: Comparing optimal controls for the base Stackelberg game and the Social Planner,
time = 0. State variables e1 = e2 = 10Gt. Temperature is at 1 ◦C and 4 ◦C above
preindustrial levels. P1 refers to player 1, P2 refers to player 2.

It may seem counter-intuitive that over some state variables Player 2 is better off in the394

Trump game. This can be explained by the fact the leader is making an error in strategy at395

each decision point by assuming Player 2 will act as a follower. This hurts the leader and in396

some instances can help the follower.397

Figure 4 compares the optimal controls for the Trump case with the Stackelberg game398

and the planner. Recall that these are optimal controls hold only t = 0. Future optimal399
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time = 0.

controls depend on the evolution of the state variables. In Figure 4(a), we observe that in400

the Trump game total optimal emissions are lower than the base Stackelberg game for a401

window of carbon stock, s, between 1600 and 1800 Gt. This is reversed over a window of402

high carbon stock levels (2600 - 2800 Gt) where emissions under the Trump game are higher403

than under the Stackelberg game. While we have not included graphs of other temperature404

levels, a similar pattern is observed for temperatures ranging up to 4 degrees, although the405

range of carbon stocks over which the Trump game has lower emissions is reduced. Figure406

4(b) displays individual player optimal controls. Optimal controls for both players in the407

Trump game are identical. In the Stackelberg game we observe some oscillation of controls408

at mid carbon stock levels, which as noted early indicates the utility at these two control409

levels is nearly identical.410

We conclude that when players are symmetric, over some levels of the state variables411

(lower levels for carbon stock and temperature), it is worthwhile for Player 2 (the Stackelberg412

follower) to be part of a Trump game. One might expect that total emissions would be higher413

under a Trump game over all state variables, but we can draw no such conclusion. In fact414

we observe that the optimal choice of emissions at time zero under the Trump game is lower415
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than for the Stackelberg game for certain levels of the carbon stock.416

5.3 Contrasting constraints on player decision times - An Inter-417

leaved Game418

In the Stackelberg game, the follower makes a choice immediately after the leader. In reality,419

national policies to change emissions take time to implement. This section examines a case420

in which there are two years between the decisions of leader and follower. This implies that421

each player must wait four years before choosing a new optimal control. For example, the422

leader makes a decision at time zero, the follower makes a decision at two years later (t=2423

years), and the leader makes its next decision at two years after that (t=4 years). As is424

demonstrated in Section 3.2.3 and Appendix D, the Stackelberg game is the limit of the425

Interleaved game as the time between the leader and follower decisions goes to zero (with426

fixed leader decision times).427

Figure 5(a) plots utility versus temperature for four different cases: the base Stackelberg428

game, the Trump game, the Interleaved game (e1 = e2 = 10 Gt), and the Social Planner.429
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Interestingly the Interleaved case shows slightly higher total utility (about 2 percent)7 than430

either the Trump case or the base game. It appears that constraining each player to wait two431

years following the opposing player’s decision before making their own choice has reduced432

the effect of the tragedy of the commons. Intuitively this enforced delay implies that any433

individual player’s actions will have a more lasting effect. As an extreme, suppose player 1434

is able to make decisions every two years, but player 2 is never able to take action to reduce435

emissions. The entire burden for reducing emissions will fall to player one. Since player two436

has no control available, there is by definition no tragedy of the commons.437

As noted earlier, in the Interleaved game, the state variable representing current emissions438

affects utility. This is because there is a significant time interval before the follower (Player439

2) is able to respond to the leader’s (Player 1) optimal choices. At time zero, the leader440

goes immediately to its optimal choice, but the follower must maintain her current emissions441

level until two years have passed. Figure 5(b) contrasts total utility showing two different442

levels for player 2’s current emissions, e2 = 0 and e2 = 10. (Player 1’s current emissions are443

immaterial as she immediately goes to her optimal choice.) The state variable at e2 = 0 gives444

a slightly higher total utility than when e2 = 10. Note that the optimal choice of emissions445

for both leader and follower over this range of temperatures, and given s = 800 Gt, is 7 Gt.446

For contrast we also include a curve labelled ‘Interleave 4 year’ in Figure 5(b). In this447

case, the time between decisions is increased to four years, so that each player can only make448

a choice every eight years. We see that in the four year Interleaved case, total utility is now449

lower than in the base game. The ‘Interleave 4 year’ case also has slightly lower utility than450

a Stackelberg game played every four years. (The ‘Stackelberg 4 year’ game is not shown451

on the graph to avoid clutter.) It is interesting that the 2 year Interleaved case (4 years452

between an individual player’s decisions) increased utility relative to the base Stackelberg453

game, whereas the 4 year Interleaved case (8 years between an individual player’s decisions)454

causes a reduction. There appears to be two countervailing effects going on. The shorter455

7This difference depends on the stock of carbon. At S = 1400 and X = 1 ◦C, total utility in the
interleaved game is higher by 5 percent compared to the base Stackelberg game. However for very high
carbon stock levels (S = 2200) the difference goes to zero.
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delay between decisions reduces the tragedy of the commons and increases utility, but with456

a longer delay this beneficial effect is overwhelmed by the negative effects of not being able457

to respond promptly to changes in the key state variables, temperature and carbon stock.458

Figures 5(c) and 5(d) show the results for individual player utilities. There is some varia-459

tion depending on the starting value for Player 2. The graph on the left (Figure 5(c)) shows460

the state variable e2 = 10. Here we see Player 2 (the follower) gains from the Interleaved461

case relative to the base Stackelberg case, while Player 1 (the leader) is worse off. The graph462

on the right (Figure 5(d)) shows the state variable e2 = 0. In this case, the both Player 1463

and Player 2 are better off. It makes sense that the leader benefits if the follower starts the464

game with a very low level of emissions, which cannot be changed until 2 years later in this465

case.466

The optimal controls for the Interleaved and base cases are shown in Figure 6. Total467

emissions at time zero (Figure 6(c)) are lower for the Interleaved case over a range of carbon468

stock levels around S = 1800 and S = 2600 Gt. Both leader and follower show different469

choices compared to the Stackelberg case. Compared to the Social Planner the initial choice470

of emissions in both games is significantly larger over a wide range of carbon stock levels.471

472

5.4 Nash-if-possible473

Our numerical computations show that Nash equilibria exist at approximately 60% of pos-474

sible values for state variables, over all time steps, for the Stackelberg case. Since Nash475

equilibria do not always exist, we cannot do a direct comparison of Nash versus Stackelberg476

equilibria. However we can investigate a case were for each combination of state variables,477

we choose the Nash equilibrium if it exists, and if not revert to the Stackelberg game. We478

refer to this case as Nash-if-possible or NIP. If a Nash equilibrium does not exist, we apply479

the base case rules whereby player 1 goes first, and player 2 chooses immediately afterwards.480

Figure 7 shows the results of this exercise. Figure 7(a) indicates that at S = 800 GT,481

total utility under NIP is slightly higher than under the base game. The difference in utility482
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Figure 5: Comparing utilities for base Stackelberg game and Interleaved game, time = 0.

is largest at lower temperatures, and is eliminated at higher temperatures. The relative483

difference is 2 percent at a temperature of 0 ◦C, dropping to 0.5 percent at 3 ◦C. Figure 7(b)484

shows that the beneficiary of the NIP game is the follower. The leader’s utility for S = 800485

is either the same or lower than under the Stackelberg game. Figures 7(c) and 7(d) compare486

optimal strategies for the two games at time zero. Note that the planner chooses much lower487

emissions over most carbon stocks than either the base or NIP cases488

Of course the differences between the NIP and Stackelberg games change depending on489

current state variables. The largest differences are seen for middling carbon stock levels. For490
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example if S = 1400 (not shown), total utility for NIP is higher than the base game by 5 to491

12 percent at temperature levels between 1 and 3 ◦C. The largest beneficiary is the follower,492

but the leader also sees some improvement in utility.493

494
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6 Concluding Comments495

Strategic actions by decision makers are a key factor in our ability to confront the causes496

of global warming. Economic models based on game theory approaches have deepened our497

understanding of the consequences of strategic behaviour for the tragedy of the commons.498

This paper extends the pollution game literature by examining several different types of499

games not previously considered. We take as a starting point the differential game model500
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of Insley, Snoddon & Forsyth (2018) which determines the closed loop optimal controls of501

two players choosing emission levels in a repeated Stackelberg game, while facing damages502

caused by rising temperatures in response to the build up of the atmospheric carbon stock.503

In the current paper we consider three alternative specifications of the games, which we call504

the Trump game, the Interleaved game, and Nash-if-Possible (NIP). These variations provide505

some interesting insights into the climate change game.506

In the Trump game, both players act as leaders, mistakenly assuming the other player507

will respond rationally as a follower. Not surprisingly, total utility is lower in this game.508

However it is Player 1 (the leader in the Stackelberg base game) who suffers the most. At509

lower levels of carbon stock, Player 2 (the follower in the Stackelberg base game) actually510

gains slightly from the Trump game. As the carbon stock increases both players are worse511

off in the Trump game, but relatively speaking the leader experiences the largest reduction512

in utility. We conclude that in the Stackelberg game the follower might as well play like a513

leader, as she will be no worse off and may be better off at lower levels of the carbon stock.514

However the Trump game is not beneficial for the environment as total utility or welfare515

suffers in this game, particularly at higher carbon stock levels.516

In the Interleaved game, unlike the Stackelberg game, Player 2 does not make a decision517

immediately after Player 1 makes her choice. Rather there is a gap of several years between518

player decisions. This element is intended to add some reality to the game, in that policy519

changes to reduce emissions do not happen instantaneously in the real world. We prove that520

in the limit as the time interval between player decisions goes to zero, the Interleaved game521

converges to the Stackelberg game.522

We examined an Interleaved game of two years with a decision made by one of the players523

every two years, implying each player must wait four years between their own decisions. In524

this Interleaved game, we found that total utility increased compared to the basic Stack-525

elberg game in which both players make optimal choices at two year intervals, with the526

follower choosing instantaneously after the leader. We found the follower does better in this527

Interleaved game compared to the Stackelberg game. The repercussions for the leader are528
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dependent on the starting level of emissions for the follower. For low starting values for the529

follower, the leader also does better in the Interleaved game. However if the follower starts530

at high emissions levels, the leader is worse of in this Interleaved game. We interpret this531

result to mean that there is a benefit to a player in not reacting immediately to the actions532

of the other player. The follower, in particular, benefits from the fact that follower emis-533

sions cannot be changed for two years, forcing the leader to undertake any needed emissions534

reduction. If the follower starts with a high level of emissions, the leader is forced to react.535

The relative benefits of the Interleaved game depend on the time interval between deci-536

sions. If the time between decisions is increased, eventually both players will be worse off537

in the Interleaved game as the extended wait between decisions does not allow the players538

to adequately respond to the environmental problem. We found this to be the case with an539

Interleaved game of four years, when individual player make decisions every eight years.540

In the NIP game, we found that for lower levels of carbon stock and temperature, total541

utility is increased compared to the base Stackelberg game. The Stackelberg follower is the542

main beneficiary when both players choose a Nash equilibrium if it exists.543

The Stackelberg game is convenient to apply in a differential pollution game setting, since544

a solution can always be found, even if optimal choices at any given time period may not be545

Nash. However the Stackelberg game may not be the most appropriate for the analysis of546

strategic decisions in certain settings. We have demonstrated three alternative games which547

result in improved welfare for one or both players, implying that if given the choice the548

players would rather be part of these alternative games. A key conclusion of our analysis is549

that the timing between leader and follower decisions has a crucial impact on the outcome of550

the game for the players, as well as for total welfare. Another interesting take-away is that551

the differences between the various games in terms of utility and optimal choices diminishes552

as temperature and/or carbon stock gets very high. The interpretation here is that when553

the consequences of excessive carbon emissions become dire, player strategy is no longer554

important as little can be done to change the outcome for any individual player.555
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Appendices556

A Numerical methods557

A.1 Advancing the solution from t−m+1 → t+m558

Since we solve the PDEs backwards in time, it is convenient to define τ = T − t and use the559

definition560

V̂p(e1, e2, xi, s, τ) = Vp(e1, e2, xi, s, T − τ)

π̂p(e1, e2, xi, s, τ) = πp(e1, e2, xi, s, T − τ) . (28)

We rewrite Equation (12) in terms of backwards time τ = T − t561

∂V̂p
∂τ

= L̂V̂p + π̂p + [(e1 + e2) + ρ(S̄ − s)]∂V̂p
∂s

L̂V̂p ≡
(σ)2

2

∂2V̂p
∂x2

+ η(X̄ − x)
∂V̂p
∂x
− rV̂p . (29)

Defining the Lagrangian derivative562

DV̂p
Dτ
≡ ∂V̂p

∂τ
+

(
ds

dτ

)
∂V̂p
∂s

, (30)

then Equation (29) becomes563

DV̂p
Dτ

= L̂V̂p + πp (31)

ds

dτ
= −[(e1 + e2) + ρ(S̄ − s)] . (32)

Integrating Equation (32) from τ to τ −∆τ gives564

sτ−∆τ = sτ exp(−ρ∆τ) + S̄(1− exp(−ρ∆τ)) +
(e1 + e2

ρ

)
(1− exp(−ρ∆τ)) . (33)
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We now use a semi-Lagrangian timestepping method to discretize Equation (29) in backwards565

time τ . We use a fully implicit method as described in Chen & Forsyth (2007).566

V̂p(e1, e2, x, sτ , τ) = (∆τ)L̂V̂p(e1, e2, x, sτ , τ)

+(∆τ)πp(e1, e2, x, sτ , τ) + V̂p(e1, e2, x, sτ−∆τ , τ −∆τ) . (34)

Equation (34) now represents a set of decoupled one-dimensional PDEs in the variable x,567

with (e1, e2, s) as parameters. We use a finite difference method with forward, backward,568

central differencing to discretize the L̂ operator, to ensure a positive coefficient method.569

(See Forsyth & Labahn (2007/2008) for details.) Linear interpolation is used to determine570

V̂p(e1, e2, x, sτ−∆τ , τ −∆τ). We discretize in the x direction using an unequally spaced grid571

with nx nodes and in the S direction using ns nodes. Between the time interval t−m+1, t
+
m we572

use nτ equally spaced time steps. We use a coarse grid with (nτ , nx, ns) = (2, 27, 21). We573

repeated the computations with a fine grid doubling the number of nodes in each direction574

to verify that the results are sufficiently accurate for our purposes.575

A.2 Advancing the solution from t+m → t−m576

We model the possible emission levels as four discrete states for each of e1, e2, which gives 16577

possible combinations of (e1, e2). We then determine the optimal controls using the methods578

described in Section 3.2.1. We use exhaustive search (among the finite number of possible579

states for (e1, e2) ) to determine the optimal policies. This is, of course, guaranteed to obtain580

the optimal solution. Recall that since we use a tie-breaking rule, the optimal controls are581

unique.582

B Monotonicity of the Numerical Solution583

Economic reasoning dictates that if the value function is decreasing as a function of tempera-584

ture x at t = t−m+1, and if the benefits are decreasing in temperature, then the value function585

should be decreasing in temperature at t+m. This can be shown to be an exact solution of586
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PDE (12). In our numerical tests with extreme damage functions, which resulted in rapidly587

changing functions πp, we sometimes observed numerical solutions which did not have this588

property. In order to ensure that this desirable property of the solution holds, we require589

a timestep restriction. To the best of our knowledge, this restriction has not been reported590

previously. In practice, this restriction is quite mild, but nevertheless important for extreme591

cases.592

We remind the reader that since we solve the PDEs backwards in time, it is convenient593

to use the definitions594

V̂p(e1, e2, xi, s, τ) = Vp(e1, e2, xi, s, T − τ)

π̂p(e1, e2, xi, s, τ) = πp(e1, e2, xi, s, T − τ) . (35)

Assuming that we discretize Equation (34) on a finite difference grid xi, i = 1, . . . , nx, we595

define596

V n+1
i = V̂p(e1, e2, xi, sτn+1 , τn+1)

ci ≡ c(xi) = π̂p(e1, e2, xi, sτn+1 , τn+1)∆τ + V̂p(e1, e2, xi, sτn , τ
n) (36)

Using the methods in Forsyth & Labahn (2007/2008), we discretize Equation (34) using the597

definitions (36) as follows598

−αi∆τV n+1
i−1 + (1 + (αi + βi + r)∆τ)V n+1

i − βi∆τV n+1
i+1 = ci , (37)

for i = 1, . . . , nx. Note that the boundary conditions used (see Section 3.1) imply that α1 = 0599

and that βnx = 0, so that Equation (37) is well defined for all i = 1, . . . , nx. See Forsyth &600

Labahn (2007/2008) for precise definitions of αi and βi.601

Note that by construction αi, βi satisfy the positive coefficient condition602

αi ≥ 0 ; βi ≥ 0 ; i = 1, . . . , nx . (38)
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Assume that603

V̂p(e1, e2, xi+1, sτn , τ
n)− V̂p(e1, e2, xi, sτn , τ

n) ≤ 0

π̂p(e1, e2, xi+1, sτn+1 , τn+1)− π̂p(e1, e2, xi, sτn+1 , τn+1) ≤ 0 , (39)

which then implies that604

ci+1 − ci ≤ 0 . (40)

If Equation (40) holds, then we should have that V n+1
i+1 − V n+1

i ≤ 0 (this is a property of the605

exact solution of Equation (34) if c(y)− c(x) ≤ 0 if y > x).606

Define Ui = V n+1
i+1 − V n+1

i , i = 1, . . . , nx − 1. Writing Equation (37) at node i and node607

i+ 1 and subtracting, we obtain the following Equation satisfied by Ui,608

[1 + ∆τ(r + αi+1 + βi)]Ui −∆ταiUi−1 −∆τβi+1Ui+1 = ∆τ(ci+1 − ci)

i = 1, . . . , nx − 1

α1 = 0 ; βnx = 0 . (41)

Let U = [U1, U2, . . . , Unx−1]′, Bi = ∆τ(ci+1 − ci), B = [B1, B2, . . . , Bnx−1]′. We can then609

write Equation (41) in matrix form as610

QU = B , (42)

where611

[
QU
]
i

= [1 + ∆τ(r + αi+1 + βi)]Ui −∆ταiUi−1 −∆τβi+1Ui+1 . (43)

Recall the definition of an M matrix (Varga 2009),612

Definition 4 (Non-singular M-matrix). A square matrix Q is a non-singular M matrix if613

(i) Q has non-positive off-diagonal elements (ii) Q is non-singular and (iii) Q−1 ≥ 0.614
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A useful result is the following (Varga 2009)615

Theorem 1. A sufficient condition for a square matrix Q to be a non-singular M matrix is616

that (i) Q has non-positive off-diagonal elements (ii) Q is strictly row diagonally dominant.617

From Theorem 1, and Equation (43), a sufficient condition for Q to be an M matrix is that618

1 + ∆τ [r + (αi+1 − αi) + (βi − βi+1)] > 0 , i = 1, ... nx−1 (44)

which for a fixed temperature grid, can be satisfied for a sufficiently small ∆τ . If mini(xi+1−619

xi) = ∆x, then αi = O((∆x)−2), βi = O((∆x)−2). If αi, βi are smoothly varying coefficients,620

then we can assume that621

|αi+1 − αi| = O

(
1

∆x

)
; |βi − βi+1| = O

(
1

∆x

)
, (45)

and hence condition (44) is essentially a condition on ∆τ/∆x. In practice, for smoothly622

varying coefficients, |αi+1−αi| and |βi− βi+1| are normally small, so the timestep condition623

(44) is quite mild.624

Proposition 1 (Monotonicity result). Suppose that (i) condition (44) is satisfied and (ii)625

Bi = ∆τ(ci+1 − ci) ≤ 0, then Ui = V n+1
i+1 − V n+1

i ≤ 0.626

Proof. From condition (44), Definition 4, and Theorem 1 we have that Q−1 ≥ 0, hence from627

Equation (42)628

U = Q−1B ≤ 0 . (46)

629

The practical implication of this result is that if conditions (39) hold at τ = T − t−m+1,630

then V̂ (·, τ = T − t+m) is a non increasing function of temperature. However, this property631

may be destroyed after application of the optimal control at τ = T − t+m → T − t−m. In other632
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words, if we observe that the solution is increasing in temperature, this can only be a result633

of applying the optimal control, and is not a numerical artifact.634

C Nash Equilibrium635

We again fix (e1, e2, s, x, tm), so that we understand that e+
p = e+

p (e1, e2, s, x, tm), Rp(ω; e−1 ) =636

Rp(ω; e−p ; s, x, tm).637

Definition 5 (Nash Equilibrium). Given the best response sets R2(ω1; e−2 ), R1(ω2; e−1 ) defined638

in Equations (15)-(16), then the pair (e+
1 , e

+
2 ) is a Nash equilibrium point if and only if639

e+
1 = R1(e+

2 ; e−1 ) ; e+
2 = R2(e+

1 ; e−2 ) . (47)

The following proposition is proven in Insley, Snoddon & Forsyth (2018).640

Proposition 2 (Sufficient condition for a Nash Equilibrium). Suppose (ê+
1 , ê

+
2 ) is the Stack-641

elberg control if player 1 goes first and (ē+
1 , ē

+
2 ) is the Stackelberg control if player 2 goes first.642

A Nash equilibrium exists at a point (e1, e2, s, x, tm) if (ê+
1 , ê

+
2 ) = (ē+

1 , ē
+
2 ).643

Remark 3 (Checking for a Nash equilibrium). A necessary and sufficient condition for a644

Nash Equilibrium is given by condition (47). However a sufficient condition for a Nash645

equilibrium in the Stackelberg game is that optimal control of either player is independent of646

who goes first.647

D Interleave Game648

In this appendix, we consider the situation where each player makes optimal decisions alter-649

natively. These decision times are separated by a finite time interval.650

Suppose that player one chooses an optimal control at time tm, which we denote by em+
1 .651

Player two’s control is fixed at the value em−2 . At time tm+1, player two chooses a control652
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e
(m+1)+
2 , while player one’s control is fixed at e

(m+1)−
1 . To avoid notational clutter, we will653

fix the state variables (s, x) in the following, with the dependence on (s, x) understood.654

At time tm, we have, with player two’s control fixed at em−2 ,655

V1(em−1 , em−2 , t−m) = V1(em+
1 , em−2 , t+m) (48)

V2(em−1 , em−2 , t−m) = V2(em+
1 , em−2 , t+m) . (49)

Player one’s control is determined from656

V1(em−1 , em−2 , t−m) = max
e′1

V1(e′1, e
m−
2 , t+m)

∣∣
break ties: em−1

= V1(em+
1 , em−2 , t+m) (50)

em+
1 = argmax

e′1

V1(e′1, e
m−
2 , t+m)

∣∣
break ties: em+

1 =em−1
. (51)

We remind the reader that we break ties by staying at the current level (if that is a maxima of657

equation (51) ) or preferring the lowest emission level (if the current state is not a maxima).658

Consequently, em+
1 = em+

1 (em−1 , em−2 , t+m) since dependence on em−1 is induced by the tie-659

breaking rule.660

At time tm+1, player two chooses a control, with player one’s control fixed at e
(m+1)−
1 ,661

V1(e
(m+1)−
1 , e

(m+1)−
2 , t−m+1) = V1(e

(m+1)−
1 , e

(m+1)+
2 , t+m+1) (52)

V2(e
(m+1)−
1 , e

(m+1)−
2 , t−m+1) = V2(e

(m+1)−
1 , e

(m+1)+
2 , t+m+1) . (53)

Player two’s control is determined from662

V2(e
(m+1)−
1 , e

(m+1)−
2 , t−m+1) = V2(e

(m+1)−
1 , e

(m+1)+
2 , t+m+1)

= max
e′2

V2(e
(m+1)−
1 , e′2, t

+
m+1)

∣∣
break ties: e

(m+1)−
2

(54)

e
(m+1)+
2 = argmax

e′2

V2(e
(m+1)−
1 , e′2, t

+
m+1)

∣∣
break ties: e

(m+1)+
2 =e

(m+1)−
2

= R2(e
(m+1)−
1 ; e

(m+1)−
2 ; t+m+1) , (55)
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where R2(e
(m+1)−
1 ; e

(m+1)−
2 ; t+m+1) is the best response function of player two to player one’s663

control e
(m+1)−
1 . Note that the tie-breaking strategy induces a dependence on the state664

e
(m+1)−
2 in R2(·).665

More generally, we can define player two’s response function for arbitrary arguments666

(ω1;ω2)667

R2(ω1;ω2; t+m+1) = argmax
ω′2

V2(ω1, ω
′
2, t

+
m+1)

∣∣
break ties: R2=ω2

. (56)

Now, consider the limit where tm+1 → tm, so that668

e
(m+1)−
1 → em+

1 ; e
(m+1)−
2 → em−2 ; t−m+1 → t+m . (57)

Using equation (57) in equation (52) gives669

V1(em+
1 , em−2 , t+m) = V1(em+

1 , e
(m+1)+
2 , t+m+1) , (58)

while equation (57) in equations (54-55) gives670

V2(em+
1 , em−2 , t+m) = V2(em+

1 , e
(m+1)+
2 , t+m+1) (59)

e
(m+1)+
2 = R2(em+

1 ; em−2 ; t+m+1) . (60)

From equations (58) and (60) we have671

V1(em+
1 , em−2 , t+m) = V1(em+

1 , R2(em+
1 ; em−2 ; t+m+1), t+m+1) , (61)

and replacing em+
1 by e′1 in equation (61) gives672

V1(e′1, e
m−
2 , t+m) = V1(e′1, R2(e′1; em−2 ; t+m+1), t+m+1) . (62)
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Recall that (from equation (50))673

V1(em−1 , em−2 , t−m) = max
e′1

V1(e′1, e
m−
2 , t+m)

∣∣
break ties: em−1

, (63)

so that substituting equation (62) into equation (63) gives674

V1(em−1 , em−2 , t−m) = max
e1′

V1(e′1, R2(e′1; em−2 ; t+m+1), t+m+1)
∣∣
break ties: em−1

= V1(em+
1 , R2(em+

1 ; em−2 ; t+m+1), t+m+1)

em+
1 = argmax

e′1

V1(e′1, R2(e′1; em−2 ; t+m+1), t+m+1)
∣∣
break ties: em−1

. (64)

From equations (49) and (59-60) we also have that675

V2(em−1 , em−2 , t−m) = V2(em+
1 , em−2 , t+m)

= V2(em+
1 , e

(m+1)+
2 , t+m+1)

e
(m+1)+
2 = R2(em+

1 ; em−2 ; t+m+1) . (65)

In summary, equations (64-65) give676

V1(em−1 , em−2 , t−m) = V1(em+
1 , e

(m+1)+
2 , t+m+1)

V2(em−1 , em−2 , t−m) = V2(em+
1 , e

(m+1)+
2 , t+m+1)

em+
1 = argmax

e′1

V1(e′1, R2(e′1; em−2 ; t+m+1), t+m+1)
∣∣
break ties: em−1

e
(m+1)+
2 = R2(em+

1 ; em−2 , t+m+1) , (66)

which, from Definition 3, we recognize as a Stackelberg game if t+m+1 → t+m.677

Proposition 3 follows immediately:678

Proposition 3 (Limit of Interleaved game). Suppose we have an Interleaved game at times679

tm, given by equations (48-55). Suppose tm+1−tm = ∆t, and that player one makes decisions680

for m even, while player two acts optimally for m odd. Consider fixing player one’s decision681
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times t2i, i = 0, 1, . . ., and moving player two decision times t2i+1, i = 0, 1, . . ., such that682

(t2i+1 − t2i)→ 0+ ; i = 0, 1, 2, . . .

t2i − t2(i−1) = 2∆t ; i = 1, 2, . . . (67)

then the Interleaved game becomes a Stackelberg game.683

E Additional results: Changing the terminal time684

The terminal time for the analysis is set at 150 years. After 150 years it is assumed that due685

to a technological breakthrough, emissions no longer contribute to the stock of carbon, but do686

add benefits. We could imagine any carbon produced by burning fossil fuels is immediately687

captured and stored. At the boundary t = T the temperature is set to the long run mean688

implied by the particular stock of carbon given by the state variable S. Utility at the689

boundary is set to be the present value of an infinite stream of utility from emissions (now690

harmless) set to their maximum level, and temperature remaining at the long run mean.691

This is an arbitrary assumption. The logic is that even with a technological breakthrough692

the earth will be left to bear the consequences of past carbon emissions for a long time to693

come. As a check on the results we ran cases with T = 25 and T = 300.694

Figure 8 compares the optimal controls for T = 150 (lower two diagrams) with T = 25695

(upper two diagrams) for the base Stackelberg game and the social planner. We observe that696

in the T = 25 case, the optimal controls are cut back at a lower carbon stock than when697

T = 150. This makes sense as with T = 25 there is much less time to react and have an698

impact on the final stock of carbon, and hence the terminal value of the temperature.699

Optimal emissions for T = 300 versus T = 150 were also compared. These two cases are700

very similar, indicating that utility beyond 150 years is not having a large impact on results.701
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Figure 8: Comparing optimal controls for different terminal times, base Stackelberg game
and the Social Planner, time = 0. State variables e1 = e2 = 10Gt. Temperature is at 1◦C
above preindustrial levels. P1 refers to player 1, P2 refers to player 2.
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