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Chapter 1

Preliminaries

These notes have been written for Econ 401 as taught by me at the University
of Waterloo. As such the list of topics reflects the course material for that
particular course. It is assumed that the student has mastered the pre-
requisites and little or no time is spent on them, aside from a review of
standard consumer economics and general equilibrium in chapter 1. I assume
that the student has access to a standard undergraduate micro theory text
book. Any of the books commonly used will do and will give introductions
to the topics covered here, as well as allowing for a review, if necessary, of
the material from the pre-requisites.

These notes will not give references. The material covered is by now
fairly standard and can be found in one form or another in most micro texts.
I wish to acknowledge two books, however, which have served as references:
the most excellent book by Mas-Colell, Whinston, and Green, Microeconomic
Theory, as well as the much more concise Jehle and Reny, Advanced Micro-
economic Theory. I also would like to acknowledge my teachers Don Ferguson
and Glen MacDonald, who have done much to bring microeconomics alive
for me.

This preliminary chapter contains extensive quotes which I have found
informative, amusing, interesting, and thought provoking. Their sources have
been indicated.

1
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1.1 About Economists

By now you may have heard many jokes about economists and noticed that
modern economics has a bad reputation in some circles. If you mention your
field of study in the bar, you are quite possibly forced to defend yourself
against various stereotypical charges (focusing on assumptions, mostly.) The
most eloquent quotes about economists that I know of are the following two
quotes reproduced from the Economist, Sept.4, 1993, p.25:

No real Englishman, in his secret soul, was ever sorry for the death
of a political economist, he is much more likely to be sorry for his
life. You might as well cry at the death of a cormorant. Indeed
how he can die is very odd. You would think a man who could
digest all that arid matter; who really preferred ‘sawdust without
butter’; who liked the tough subsistence of rigid formulae, might
defy by intensity of internal constitution all stomachic or lesser
diseases. However they do die, and people say that the dryness
of the Sahara is caused by a deposit of similar bones.
(Walter Bagehot (1855))

Are economists human? By overwhelming majority vote, the
answer would undoubtedly be No. This is a matter of sorrow for
them, for there is no body of men whose professional labours are
more conscientiously, or consciously, directed to promoting the
wealth and welfare of mankind. That they tend to be regarded
as blue-nosed kill-joys must be the result of a great misunder-
standing. (Geoffrey Crowther (1952))

1.2 What is (Micro—)Economics?

In Introductory Economics the question of what economics is has received
some attention. Since then, however, this question may have received no
further coverage, and so I thought to collect here some material which I to
use to start a course. It is meant to provide a background for the field as
well as a defense, of sorts, of the way in which micro economics is practiced.

Malinvaud sees economics as follows:
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Here we propose the alternative, more explicit definition: eco-

nomics is the science which studies how scarce resources are em-

ployed for the satisfaction of the needs of men living in society:

on the one hand, it is interested in the essential operations of

production, distribution and consumption of goods, and on the

other hand, in the institutions and activities whose object it is to

facilitate these operations. [...]

The main object of the theory in which we are interested is the
analysis of the simultaneous determination of prices and the quan-
tities produced, exchanged and consumed. It is called microeco-
nomics because, in its abstract formulations, it respects the in-
dividuality of each good and each agent. This seems a necessary
condition a priori for logical investigation of the phenomena in
question. By contrast, the rest of economic theory is in most
cases macroeconomic, reasoning directly on the basis of aggre-
gates of goods and agents.
[E. Malinvaud, Lectures on Microeconomic Theory, revised, N-H,
1985, p.1-2.]

This gives us a nice description of what economics is, and in particular
what micro theory entails. In following the agenda laid out by Malinvaud a
certain amount of theoretical abstraction and rigor have been found neces-
sary, and one key critique heard often is the “attempt at overblown rigor”
and the “unrealistic assumptions” which micro theory employs. Takayama
and Hildenbrand both address these criticisms in the opening pages of their
respective books. First Takayama:

The essential feature of modern economic theory is that it is an-
alytical and mathematical. Mathematics is a language that facil-
itates the honest presentation of a theory by making the assump-
tions explicit and by making each step of the logical deduction
clear. Thus it provides a basis for further developments and ex-
tensions. Moreover, it provides the possibility for more accurate
empirical testing. Not only are some assumptions hidden and ob-
scured in the theories of the verbal and “curve-bending” economic
schools, but their approaches provide no scope for accurate em-
pirical testing, simply because such testing requires explicit and
mathematical representations of the propositions of the theories
to be tested.

[...] But yet, economics is a complex subject and involves many
things that cannot be expressed readily in terms of mathematics.
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Commenting on Max Planck’s decision not to study economics,
J.M. Keynes remarked that economics involves the “amalgam of
logic and intuition and wide knowledge of facts, most of which
are not precise.” In other words, economics is a combination
of poetry and hard-boiled analysis accompanied by institutional
facts. This does not imply, contrary to what many poets and
institutionalists feel, that hard-boiled analysis is useless. Rather,
it is the best way to express oneself honestly without being buried
in the millions of institutional facts. [...]

Mathematical economics is a field that is concerned with com-
plete and hard-boiled analysis. The essence here is the method of
analysis and not the resulting collection of theorems, for actual
economies are far too complex to allow the ready application of
these theorems. J.M. Keynes once remarked that “the theory of
economics does not furnish a body of settled conclusions immedi-
ately applicable to policy. It is a method rather than a doctrine,
an apparatus of the mind, a technique of thinking, which helps
its possessor to draw conclusions.”

An immediate corollary of this is that the theorems are useless
without explicit recognition of the assumptions and complete un-
derstanding of the logic involved. It is important to get an intu-
itive understanding of the theorems (by means of diagrams and
so on, if necessary), but this understanding is useless without a
thorough knowledge of the assumptions and proofs.
[Akira Takayama, Mathematical Economics, 2nd ed., Cambridge,
1985, p. xv.]

Hildenbrand offers the following:

I cannot refrain from repeating here the quotation from Bertrand
Russell cited by F. Hahn in his inaugural lecture in Cambridge:
“Many people have a passionate hatred of abstraction, chiefly, I
think, because of its intellectual difficulty; but as they do not wish
to give this reason they invent all sorts of other that sound grand.
They say that all abstraction is falsification, and that as soon as
you have left out any aspect of something actual you have exposed
yourself to the risk of fallacy in arguing from its remaining aspects
alone. Those who argue that way are in fact concerned with
matters quite other than those that concern science.” (footnote
2, p.2, with reference)
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Let me briefly recall the main characteristics of an axiomatic the-
ory of a certain economic phenomenon as formulated by Debreu:

First, the primitive concepts of the economic analysis are selected,
and then, each one of these primitive concepts is represented by
a mathematical object.

Second, assumptions on the mathematical representations of the
primitive concepts are made explicit and are fully specified. Math-
ematical analysis then establishes the consequences of these as-
sumptions in the form of theorems.
[Werner Hildenbrand, Twenty Papers of Gerard Debreu, Econo-
metric Society Monograph 4, Cambridge, 1983, page 4, quoted
with omissions.]

1.3 Economics and Sex

I close this chapter with the following thought provoking excerpt from Mark
Perlman and Charles R. McCann, Jr., “Varieties of uncertainty,” in Uncer-
tainty in Economic Thought, ed. Christian Schmidt, Edward Elgar 1996, p
9-10.

The problem as perceived

As this is an opening paper, let us begin with what was once an estab-
lished cultural necessity, namely a reference to our religious heritage. What
we have in mind is the Biblical story of the Fall of Man, the details of which
we shall not bore you with. Rather, we open consideration of this difficult
question by asking what was the point of that Book of Genesis story about
the inadequacy of Man.

We are told that apparently whatever were God’s expectations, He be-
came disappointed with Man. Mankind and particularly Womankind1 did
not live up to His expectations.2 In any case, Adam and Eve were informed

1Much has been made of the failure of women, perhaps that is because men wrote up
the history. We should add, in order to avoid deleterious political correctness (and thereby
cut off provocation and discussion), that since Eve was the proximate cause of the Fall,
and Eve represents sexual attraction or desire, some (particularly St Paul, whose opinion
of womankind was problematic) have considered that sexual attraction was in some way
even more responsible for the Fall than anything else. Put crudely, even if economics

is not a sexy subject, its origins were sexual.
2What that says about His omniscience and/or omnipotence is, at the very least, para-
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that they had ‘fallen’ from Grace, and all of us have been made to suffer ever
since.

From our analytical standpoint there are two crucial questions:

1. What was the sin; and

2. What was the punishment?

The sin seems to have been something combining (1) an inability to fol-
low precise directions; (2) a willingness to be tempted, particularly when one
could assert that ‘one was only doing what everyone else (sic) was doing;3

(3) a greed involving things (something forbidden) and time (instant grat-
ification); (4) an inability to leave well enough alone; and (5) an excessive
Faustian curiosity. Naturally, as academic intellectuals, we fancy the fifth
reason as best.

But what interests us directly is the second question. It is ‘What was
God’s punishment for Adam and Eve’s vicarious sin, for which all mankind
suffers?’ Purportedly a distinction has been made between what happened to
Man and Woman, but, the one clear answer, particularly as seen by Aquinas

and by most economists ever since, was that man is condemned to live with
the paradigm of scarcity of goods and services and with a schedule of ap-
petites and incentives which are, at best, confusing.

In the more modern terms of William Stanly Jevons, ours is a world
of considerable pain and a few costly pleasures. We are driven to produce
so that we can consume, and production is done mostly by the ‘sweat of
the brow’ and the strength of the back. The study of economics — of the
production, distribution and even the consumption of goods and services —
it follows, is the result of the Original Sin. When Carlyle called Economics
the ‘Dismal Science’, he was, if anything, writing in euphemisms; Economics
per se, is the Punishment for Sin.

doxical.
3Cf. Genesis, 3:9-12,16,17. [9] But the Lord God called to the man and said to him, ‘

Where are you?’ [10] He replied, ‘I heard the sound as you were walking the garden , and
I was afraid because I was naked, and I hid myself.’ [11] God answered, ‘ Who told you
that you were naked? Have you eaten from the tree which I forbade you?’ [12] The man
said, ‘The woman you gave me for a companion, she gave me fruit from the tree and I ate.’
[Note: The story, as recalled, suggests that Adam was dependent upon Eve (for what?),
and the price of that dependency was to be agreeable to Eve (‘It was really all her fault
— I only did what You [God] had laid out for me.’)] ([16] and [17] omitted) [Again, for
those civil libertarians amongst us, kindly note that God forced Adam to testify against
himself. Who says that the Bill of Rights is an inherent aspect of divine justice? Far from
it, in the Last Judgment, pleading the Fifth won’t do at all.]
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But, it is another line of analysis, perhaps novel, which we put to you.
Scarcity, as the paradigm, may not have been the greatest punishment, be-
cause scarcity, as such, can usually be overcome. Scarcity simply means that
one has to allocate between one’s preferences, and the thinking man ought
to be able to handle the situation. We use our reasoning power, surely tied
up with Free Will, to allocate priorities and thereby overcome the greater
disasters of scarcity. What was the greater punishment, indeed the greatest
punishment, is more basic. Insofar as we are aware, it was identified early
on by another Aristotelian, one writing shortly before Aquinas, Moses Mai-
monides. Maimonides suggested that God’s real punishment was to push
man admittedly beyond the limits of his reasoning power. Maimonides held
that prior to the Fall, Adam and Eve (and presumably mankind, generally)
knew everything concerning them; after the Fall they only had opinions.4

Requisite to the wise use of power is understanding and full specification;
what was lost was any such claim previously held by man to complete knowl-
edge and the full comprehension of his surroundings. In other words, what
truly underlies the misery of scarcity is neither hunger nor thirst, but the
lack of knowledge of what one’s preference schedule will do to one’s happi-
ness. For if one had complete knowledge (including foreknowledge) one could
compensate accordingly.

If one pursues Maimonides’ line of inquiry, it seems that uncertainty
(which is based not on ignorance of what can be known with study of data
collection, but also on ignorance tied to the unknowable) is the real punish-
ment.

4[omitted]
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Notation:
Blackboard versions of these symbols may differ slightly.

I will not distinguish between vectors and scalars by notation. Generally all
small variables (x, y, p) are column vectors (even if written in the notes as row
vectors to save space.) The context should clarify the usage. Capital letters
most often denote sets, as in the consumption set X, or budget set B. Sets
of sets are denoted by capital script letters, such as X = {X1, X2, . . . , Xk},
where Xi = {x ∈ <N |

√
∑

n x2
n = i}.

I will use the usual partial derivative notation ∂f/∂x1 = f1(·), if no
confusion arises, and will often omit the arguments to a function but in-
dicate that there is a function by the previous notation, i.e., f(·) denotes
f(x1, x2, . . . , xn), for example. Finally, the Reals < will be written as IR on
the board, in the more familiar fashion.
< the real numbers, superscript denotes dimensionality
<+ the non-negative reals (include 0); (<++ are the positive Reals)
∀ “for all”, for all elements in the set
∃ “there exists” or “there is at least one element”
¬ “not”, or negation, the following statement is not true
· dot product, as in x · y = xT y =

∑

n xiyi

∈ “in”, or “element of”
3 “such that”. Note: ∀x ∈ X 3 A is equivalent to {x ∈ X | A}.
≤ less or equal to, component wise: xn ≤ yn for all n = 1, . . . , N .
¿ strictly less than, component wise: ∀n ∈ N : xn < yn

≥ greater or equal (component wise)
À strictly greater (component wise)
Â strictly preferred to
º weakly preferred to
∼ indifferent to
∂ partial, as in partial derivatives
∇ gradient, the vector of partial derivatives of a function of a vector.

∇f(x) = [f1(·), f2(·), . . . , fn(·)]T
Dx derivative operator, the vector (matrix) of partial derivatives of a

vector of functions:

Dwx(p, w) =

[

∂x1(·)
∂w

,
∂x2(·)
∂w

, . . . ,
∂xN(·)

∂w

]T

⇐⇒ “if and only if”, often written “iff”



Chapter 2

Review

Consumer theory is concerned with modelling the choices of consumers and
predicting the behaviour of consumers in response to changes in their choice
environment (comparative statics.) This raises the question of how one can
model choice formally, or more precisely, how one can model decision making.
An extensive analysis of this topic would lead us way off course, but the two
possible approaches are both outlined in the next section. After that, we will
return to the standard way in which consumer decision making in particular
is addressed.

2.1 Modelling Choice Behaviour 1

Any model of choice behaviour at a minimum contains two elements: (1) a de-
scription of the available choices/decisions. (2) a description of how/why de-
cisions are made. The first part of this is relatively easy. We specify some set
B which is the set of (mutually exclusive) alternatives. For a consumer this
will usually be the budget set, i.e., the set of amounts of commodities which
can be purchased at current prices and income levels. In principle this set can
be anything, however. A simple description of this set will be advantageous,
and thus we most often will have B = {x ∈ <n

+|p·x ≤ m}, the familiar budget
set for a price taking consumer. Note that much of economics is concerned
with how choice changes as B changes. This is the standard question of com-
parative statics, where we ask how choice adjusts as income, m or one of the
prices, pi, i ∈ {1, . . . , n}, changes. It does require, however, some additional

1This material is based on Mas-Colell, Whinston, Green, chapter 1

9
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structure as to what kind of B are possible. So we get a set of sets, B, which
contains all sets B we could consider. For example, for our neo-classical con-
sumer this is B =

{

{x ∈ <n
+|p · x ≤ m}, p ∈ Sn−1,m ∈ <,m > 0

}

. We also
need a description of the things which are assembled into these budget sets.
In consumer theory this would be a consumption bundle, that is, a vector x
indicating the quantities of all the goods. We normally let X be the set of
technically feasible choices, or consumption set. This set does not take into
account what is an economically feasible choice, but only what is in principle
possible (for example, it would contain 253 Lear Jets even if those are not
affordable to the consumer in question, but it will not allow the consumer to
create time from income, say, since that would be physically impossible.)

For the second element, the description of choice itself, there are two
fundamental approaches we can take: (1) we can specify the choice for each
and every choice set, that is, we can specify choice rules directly. For our
application to the consumer this basically says that we specify the demand
functions of the consumer as the primitive notion in our theory.

Alternatively, (2), we can specify some more primitive notion of “pref-
erences” and derive the choice for each choice set from those. Under this
approach a ranking of choices in X is specified, and then choice for a given
choice set B is determined by the rule that the highest ranked bundle in the
set is taken.

In either case we will need to specify what we mean by “rational”. This
is necessary since in the absence of such a restriction we would be able to
specify quite arbitrary choices. While that would allow our theory to match
any data, it also means that no refutable propositions can be derived, and
thus the theory would be useless. Rationality restrictions can basically be
viewed as consistency requirements: It should not be possible to get the
consumer to engage in behaviour that contradicts previous behaviour. More
precisely, if the consumer’s behaviour reveals to us that he seems to like some
alternative a better than another, b, by virtue of the consumer selecting
a when both are available, this conclusion should not be contradicted in
other observations. The way we introduce this restriction into the model will
depend on the specific approach taken.

2.1.1 Choice Rules

Since we will not, in the end, use this approach, I will give an abstract
description without explicit application to the consumer problem. We are
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to specify as the primitive of our theory the actual choice for each possible
set of choices. This is done by means of a choice structure. A choice
structure contains a set of nonempty subsets of X, denoted by B. For the
consumer this would be the collection of all possible budget sets which he
might encounter. For each actual budget set B ∈ B, we then specify a
choice rule (or correspondence). It assigns a set of chosen elements, denoted
C(B) ⊂ B. In other words, for each budget set B we have a “demand
function” C(B) specified directly.

The notion of rationality we impose on this is as follows:

Definition 1 A choice structure satisfies the weak axiom of revealed
preference if it satisfies the following restriction: If ever the alternatives x
and y are available and x is chosen, then it can never be the case that y is
chosen and x is not chosen, if both x and y are available. More concisely: If
∃B ∈ B 3 x, y ∈ B ⇒ x ∈ C(B) then ∀B ′ ∈ B 3 x, y ∈ B′ and y ∈ C(B′)⇒
x ∈ C(B′).

For example, suppose that X = {a, b, c, d}, and that B = { {a, b},
{a, b, c}, {b, c, d} }. Also suppose that C({a, b}) = {a}. While the above
criterion is silent on the relation of this choice to C({b, c, d}) = {b}, it does
rule out the choice C({a, b, c}) = {b}. Why? In the first case, a is not an
element of both {a, b} and {b, c, d}, so the definition is satisfied vacuously.
(Remember, any statement about the empty set is true.) In the second case,
the fact that C({a, b}) = {a} has revealed a preference of the consumer for
a over b, after all both where available but only a was picked. A rational
consumer should preserve this ranking in other situations. So if the choice is
over {a, b, c}, then b cannot be picked, only a or c, should c be even better
than a.2

You can see how we are naturally lead to think of one choice being
better than, or worse than, another even when discussing this abstract notion
of direct specification of choice rules. The second approach to modelling
decision making, which is by far the most common, does this explicitly.

2.1.2 Preferences

In this approach we specify a more primitive notion, that of the consumer
being able to rank any two bundles. We call such a ranking a preference

2Just let x be a and y be b in the above definition!
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relation which is usually denoted by the symbol º. So, define a binary
relation º on X, with the interpretation that for any x, y ∈ X, the statement
x º y means that “x is at least as good as y”.

From this notion of weak preference we can easily define the notions
of strict preference (x Â y ⇔ (x º y and ¬(y º x))), and indifference
(x ∼ y ⇔ (x º y and y º x)).

How is rationality imposed on preferences?

Definition 2 A preference relation º is rational if it is a complete, reflexive,
and transitive binary relation.
complete: ∀x, y ∈ X, either x º y or y º x, or both;
reflexive: ∀x ∈ X, x º x;
transitive ∀x, y, z ∈ X, x º y and y º z =⇒ x º z.

At this point we might want to consider how restrictive this requirement
of rational preferences is. Completeness simply says that any two feasible
choices can be ranked. This could be a problem, since what is required is the
ability to rank things which are very far from actual experience. For example,
the consumer is assumed to be able to rank two consumption bundles which
differ only in the fact that in the first he is to consume 2 Ducati 996R, 1
Boeing 737, 64 cans of Beluga caviar, and 2 bottles of Dom Perignon, while
the other contains 1 Ducati 996R, 1 Aprilia Mille RS, 1 Airbus 320, 57 cans
of Beluga caviar, and 2 bottles of Veuve Cliquot. For most consumers these
bundles may be difficult to rank, since they may be unsure about the relative
qualities of the items. On the other hand, these bundles are very far from
the budget set of these consumers. For bundles close to being affordable, it
may be much more reasonable to assume that any two can be ranked against
each other.

Transitivity could also be a problem. It is crucial to economics since
it rules out cycles of preference. This, among other important implications,
rules out “dutch books” — a sequence of trades in which the consumer pays
at each step in order to change his consumption bundle, only to return to
the initial bundle at the end. Yet, it can be shown that it is possible to have
real life consumers violate this assumption. One problem is that of “just
perceptible differences”. If the changes in the consumption bundle are small
enough, the consumer can be led through a sequence of bundles in which
he prefers any earlier bundle to a later bundle, but which closes up on the
first, so that the last bundle in the sequence is preferred to the first, even
though it was worse than all preceding bundles, including the first. The
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other common way in which transitivity is violated is through the effects
of the “framing problem”. The framing problem refers to the fact that a
consumer’s stated preference may depend on the way the question is asked.
A famous example of this are surveys about vaccinations. If the benefits are
stressed (so many fewer crippled and dead) respondents are in favour, while
they are against vaccination programs if the costs are stressed (so many
deaths which would not have occurred otherwise.) It is worthwhile to note
that what looks like intransitivity can quite often be explained as the outcome
of transitive behaviour on more primitive characteristics of the problem. Also
note that addiction and habit formation commonly lead to what appears to
be intransitivity, but really involves a change in the underlying preferences,
or (more commonly) preferences which depend on past consumption bundles
as well. In any case, a thorough discussion of this topic is way beyond these
notes, and we will assume rational preferences henceforth.

While beautiful in it simplicity, this notion of preferences on sets of
choices is also cumbersome to work with for most (but note the beautiful
manuscript by Debreu, Theory of value). In particular, it would be nice if
we could use the abundance of calculus tools which have been invented to
deal with optimization problems. Thus the notion of a utility function is
useful.

Definition 3 A function u : X 7→ < is a utility function representing the
preference relation º if ∀x, y ∈ X, (x º y)⇔ (u(x) ≥ u(y)).

We will return to utility functions in more detail in the next section.

Choice now is modeled by specifying that the consumer will choose the
highest ranked available bundle, or alternatively, that the consumer will max-
imize his utility function over the set of available alternatives, choosing the
one which leads to the highest value of the utility function (for details, see
the next section.)

2.1.3 What gives?

If there are two ways to model choice behaviour, which is “better”? How do
they compare? Are the two approaches equivalent? Why do economists not
just write down demand functions, if that is a valid method?

To answer these questions we need to investigate the relationship be-
tween the two approaches. What is really important for us are the following
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two questions: If I have a rational preference relation, will it generate a choice
structure which satisfies the weak axiom? (The answer will be Yes.) If I have
a choice structure that satisfies the weak axiom, does there exist a rational
preference relation which is consistent with these choices? (The answer will
be Maybe.)

The following statements can be made:

Theorem 1 Suppose º is rational. Then the choice structure (B, C(·)) =
(B, {x ∈ B|x º y ∀y ∈ B}) satisfies the weak axiom.

In other words, rational preferences always lead to a choice structure
which is consistent with the weak axiom (and hence satisfies the notion of
rationality for choice structures.)

Can this be reversed? Note first that we only need to deal with B ∈ B,
not all possible subsets of X. Therefore in general more than one º might do
the trick, since there could be quite a few combinations of elements for which
no choice is specified by the choice structure, and hence, for which we are free
to pick rankings. Clearly,3 without the weak axiom there is no hope, since
the weak axiom has the flavour of “no contradictions” which transitivity also
imposes for º. However, the following example shows that the weak axiom
is not enough: X = {a, b, c}, B = { {a, b}, {b, c}, {c, a} }, C({a, b}) = {a},
C({b, c}) = {b}, C({c, a}) = {c}. This satisfies the weak axiom (vacuously)
but implies that a is better than b, b is better than c, and c is better than
a, which violates transitivity. Basically what goes wrong here is that the set
B is not rich enough to restrict C(·) much. However, if it were, there would
not be a problem as the following theorem asserts:

Theorem 2 If (B, C(·)) is a choice structure such that (i) the weak axiom
is satisfied, and (ii) B includes all 2 and 3 element subsets of X, then there
exists a rational preference ordering º such that ∀B ∈ B, C(B) = {x ∈
B|x º y ∀y ∈ B}).

While this is encouraging, it is of little use to economists. The basic
problem is that we rarely if ever have collections of budget sets which satisfy
this restriction. Indeed, the typical set of consumer budget sets consists of

3Words such as “clearly”, “therefore”, “thus”, etc. are a signal to the reader that
the argument should be thought about and is expected to be known, or at least easily
derivable.
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nested hyper planes. One way around this problem are the slightly stronger
axioms required by Revealed Preference Theory (see Varian’s Advanced Mi-

croeconomic Theory for details.)

Hence, the standard approach to consumer theory employs preferences
as the fundamental concept. The next section will review this approach.

2.2 Consumer Theory

Consumers are faced with a consumption set X ⊂ <n
+ which is the set

of all (non-negative) vectors4 x = (x1, x2, . . . , xn) where each coordinate xi

indicates the amount desired/consumed of commodity i.5 All commodities
are assumed infinitely divisible for simplicity. Often we will have only two
commodities to allow simple graphing. A key concept to remember is that a
“commodity” is a completely specified good. That means that not only is it
a ‘car’, but its precise type, colour, and quality are specified. Furthermore,
it is specified when and where this car is consumable, and the circumstances
under which it can be consumed. In previous courses these latter dimensions
have been suppressed and the focus was on current consumption without
uncertainty, but in this course we will focus especially on these latter two.
So we will have, for example, today’s consumption versus tomorrow’s, or
consumption if there is an accident versus consumption if there is no accident
(i.e., consumption contingent on the state of the world.) The consumption set
incorporates all physical constraints (no negative consumption, no running
time backwards, etc) as well as all institutional constraints. It does not
include the economic constraints the consumer faces.

The economic constraints come chiefly in two forms. One is an assump-
tion about what influence, if any, the consumer may have on the prices which
are charged in the market. The usual assumption is that of price taking,
which is to say that the consumer does not have any influence on price, or
more precisely, acts under the assumption of not having any influence on
price. (Note that there is a slight difference between those two statements!)
This assumption can be relaxed, of course, but then we have to specify how
price reacts to the consumer’s demands, or at least how the consumer thinks

4While I write all vectors as row vectors in order to save space and notation, they
are really column vectors. Hence I should really write x = (x1, x2, . . . , xn)T where the T
operator indicates a transpose.

5Given the equilibrium concept of market clearing a consumer’s desired consumption
will coincide, in equilibrium, with his actual consumption. The difference between the two
concepts, while crucial, is therefore seldom made.
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that they will react. We will deal with a simple version of that later under
the heading of bilateral monopoly, where there are only two consumers who
have to bargain over the price. In all but the most trivial settings, situations
in which the prices vary with the consumer’s actions and the consumer is
cognizant of this fact will be modelled using game theory.

More crucially, consumers cannot spend more money than what they
have. In other words, their consumption choices are limited to economi-
cally feasible vectors. The set of economically feasible consumption vec-
tors for a given consumer is termed the consumer’s budget set: B =
{x ∈ X | p · x ≤ m}. Here p is a vector of n prices, and m is a scalar de-
noting the consumer’s monetary wealth. Recall that p · x denotes a ‘dot
product’, so that p · x =

∑n
i=1 pixi. The left hand side of the inequality

therefore gives total expenditure (cost) of the consumption bundle. To add
to the potential confusion, we normally do not actually have money in the
economy at all. Instead the consumer usually has an endowment — an ini-
tial bundle of goods. The budget constraint then requires that the value of
the final consumption bundle does not exceed the value of this endowment,
in other words B = {x ∈ X | p · x ≤ p · ω}. Here ω ∈ X is the endowment.
You can treat this as a two stage process during which prices stay constant:
First, sell all initially held goods at market prices: this generates income of
p ·ω = m. Then buy the set of final goods under the usual budget constraint.
Note however that for comparative static purposes only true market trans-
actions are important, as evidenced by the change in the Slutsky equation
when moving to the endowment model (p.46, for example.)

The behavioural assumption in consumer theory is that consumers
maximize utility. What we really mean by that is that consumers have
the ability to rank all consumption bundles x ∈ X according to what is
termed the consumer’s preferences, and will choose that bundle which is the
highest ranked (most preferred) among all the available options. We denote
preferences by the symbol º, which is a binary relation. That simply means
that it can be used to compare two vectors (not one, not three or more.)
The expression x º y is read as “consumption bundle x is at least as good
as bundle y”, or “x is weakly preferred to y”.

These preferences are assumed to be:
(i) complete (∀x, y ∈ X : either x º y or y º x or both);
(ii) reflexive (∀x ∈ X : x º x);
(iii) transitive (∀x, y, z ∈ X : (x º y, y º z)⇒ x º z);
(iv) continuous ({x | x º y} and {x | y º x} are closed sets.)

What this allows us to do is to represent the preferences by a function
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u : <N
+ 7→ <, called a utility function, which has the property that

u(x) > u(y)⇐⇒ x Â y,

i.e., that the value of the function evaluated at x is larger than that at y
if and only if x is strictly preferred to y. If preferences are also strongly
monotonic ((x ≥ y, x 6= y) ⇒ x Â y) then the function u(·) can also be
chosen to be continuous. With some further assumptions it will furthermore
be continuously differentiable, and that is what we normally assume.

Note that the utility function u(·) representing some preferencesº is not
unique! Indeed, any other function which is a monotonic increasing trans-
formation of u(·), say h(u(·)), h′(·) > 0, will represent the same preferences.
So, for example, the following functions all represent the same preferences
on <2:

xα
1 xβ

2 ; αlnx1 + βlnx2; xa
1x

(1−a)
2 − 104, a =

α

α + β
; α, β > 1.

In terms of the diagram of the utility function this means that the function
has to be increasing, but that the rate of increase, and changes in the rate
of increase, are meaningless. Put differently, the “spacing” of indifference
curves, or more precisely, the labels of indifference curves, are arbitrary, as
long as they are increasing in the direction of higher quantities. Furthermore,
any two functions that have indifference curves of the same shape represent
the same preferences. This is in marked contrast to what we will have to
do later. Once we discuss uncertainty, the curvature (rate of change in the
rate of increase) of the function starts to matter, and we therefore will then
be restricted to using positive affine transforms only (things of the form
a + bu(·); b > 0).

Finally a few terms which will arise frequently enough to warrant defi-
nition here:

Definition 4 The preferences º are said to be monotone if
∀x ∈ X x >> y ⇐⇒ x Â y.

Definition 5 The preferences º are said to be strongly monotone if
∀x ∈ X x ≥ y ⇐⇒ x Â y.

Note in particular that Leontief preferences (‘L’-shaped indifference curves)
are monotone but not strictly monotone.
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Definition 6 The preferences º are said to be convex if
∀x ∈ X the set {y ∈ X|y º x} is convex.

In other words, the set of bundles weakly preferred to a given bundle is
convex. Applied to the utility function u(·) representing º this means that
the upper contour sets of the utility function are convex sets, which, if you
recall, is the definition of a quasi-concave function.

Definition 7 A function u : <N 7→ < is quasi-concave if its upper contour
sets are convex. Alternatively, u is quasi-concave if
u(λx + (1− λ)y) ≥ min{u(x), u(y)},∀λ ∈ [0, 1].

Note also that the lower boundary of an upper contour set is what we refer to
as an indifference curve. (Which exists due to our assumption of continuity
of º, which is why we had to make that particular assumption.)

Special Utility Functions

By and large utility functions and preferences can take many forms. However,
of particular importance in modelling applications and in many theories are
those which allow the derivation of the complete indifference map from just
one indifference curve. Two kinds of preferences for which this is true exist,
homothetic preferences and quasi-linear preferences.

Definition 8 Preferences º are said to be homothetic if
∀x, y ∈ X,α ∈ <++, x ∼ y ⇐⇒ αx ∼ αy.

In other words, for any two bundles x and y which are indifferent to one
another, we may scale them by the same factor, and the resulting bundles
will also be indifferent. This is particularly clear in <2

+. A bundle x can be
viewed as a vector with its foot at the origin and its head at the coordinates
(x1, x2). αx, α > 0 defines a ray through the origin through that point. Now
consider some indifference curve and 2 points on it. These points define two
rays from the origin, and homotheticity says that if we scale the distance from
the origin by the same factor on these two rays, we will intersect the same
indifference curve on both. Put differently, indifference curves are related to
one another by “radial blowup”. The utility function which goes along with
such preferences is also called homothetic:
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Definition 9 A utility function u : <N
+ 7→ < is said to be homothetic if u(·)

is a positive monotonic transformation of a function which is homogenous of
degree 1.

How does this assumption affect indifference curves? Recall that the key
about indifference curves is their slope, not the label attached to the level of
utility. The slope, or MRS (Marginal Rate of Substitution,) is u1(x)/u2(x).
Now let u(x) be homothetic, that is u(x) = h(l(x)) where h′(·) > 0 and l(·)
is homogeneous of degree 1. Then we get

u1(x)

u2(x)
=

h′(l(x))l1(x)

h′(l(x))l2(x)
=

l1(x)

l2(x)

by the chain rule. So what you ask? Recall that

Definition 10 A function h : <N 7→ < is homogeneous of degree k if ∀λ > 0,
h(λx) = λkh(x).

Therefore (in two dimensions, for simplicity) l(x1, x2) = x1l(1, x2/x1) =
x1l̂(k), where k = x2/x1. But then l1(x) = l̂(k)+l̂′(k)k, and l2(x) = l̂′(k), and
therefore the marginal rate of substitution of a homothetic utility function is
only a function of the ratio of the consumption amounts, not a function of
the absolute amounts. But the ratio x2/x1 is constant along any ray from the
origin. Therefore, the MRS of a homothetic utility function is constant along
any ray from the origin! You can verify this property for the Cobb-Douglas
utility function, for example.

The other class of preferences for which knowledge of one indifference
curve is enough to know all of them is called quasi-linear.

Definition 11 The preference º defined on <×<N−1
+ is called quasi-linear

with respect to the numeraire good 1, if ∀x, y ∈ <×<N−1
+ , α > 0, x ∼ y ⇐⇒

x + αe1 ∼ y + αe1. Here e1 = (1, 0, 0, . . .) is the base vector of the numeraire
dimension.

In terms of the diagram in <2, we require that indifference between 2 con-
sumption bundles is maintained if an equal amount of the numeraire com-
modity is added (or subtracted) from both: Indifference curves are related
to one another via translation along the numeraire axis!

Definition 12 A utility function u : <×<N−1
+ 7→ < is called quasi-linear if

it can be written as u(x) = x1 + û(x−1).
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For example the functions u(x) = x1 +
√

x2 and u(x) = x1 + lnx2 are quasi-
linear with respect to commodity 1. Note that the MRS of a quasi-linear
function is independent of the numeraire commodity:

u1(x)

u2(x)
=

1

û′(x2)
,

so that the indifference curves all have the same slope along a line parallel
to the numeraire axis (good 1 in this case.)

2.2.1 Utility Maximization

The problem addressed in consumer theory is to predict consumer behaviour
for a price taking consumer with rational preferences. The consumer’s be-
haviour is often summarized by the Marshallian demand functions, which
give us the desired consumption bundle of the consumer for all prices and in-
come. These demands correspond to the observable demands by consumers,
since they depend only on observable variables (prices and income.) This
is in contrast to the Hicksian demand functions, which we later derive from
the expenditure minimization problem. Marshallian, or ordinary, demand is
derived mathematically from a constrained optimization problem:

maxx∈X {u(x) s.t p · x ≤ m}.

The easiest way to solve this is to realize that (i) normally all commodities
are goods, that is, consumer preferences are monotonic, wherefore we can
replace the inequality with an equality constraint;6 (ii) that normally we have
assumed a differentiable utility function so that we can now use a Lagrangian:

maxx∈X L = u(x) + λ(m− p · x)

(FOCi) Li =
∂

∂xi

u(x)− λpi = ui(·)− piλ = 0 ∀i = 1 . . . n

(FOCλ) Lλ = m− p · x = 0

Of course, there are also second order conditions, but if we know that prefer-
ences are convex (the utility function is quasi-concave) and that the budget
is (weakly) concave, we won’t have to worry about them. If these conditions

6In fact, Local Non-satiation is enough to guarantee that the budget is exhausted.
Local Non-satiation assumes that for any bundle there exists a strictly preferred bundle
arbitrarily close by. This is weaker than monotonicity since no direction is assumed.
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are not obviously satisfied in a problem you will have to check the second
order conditions!

The above first order conditions are n + 1 equations which have to hold
as identities at the optimum values of the n + 1 choice variables (the n
consumption levels of goods, and the multiplier λ.) That means a variety of
things, most importantly that the implicit function theorem can be applied
if need be (and it is needed if we want to do comparative statics!)

Let us interpret the above first order conditions. The last equation
(FOCλ) states that the optimum is on the budget constraint. Since they are
identities, any two of the other first order conditions can be combined in one
of the following ways:

ui(·) = λpi

uj(·) = λpj

}

⇒ ui(·)
uj(·)

=
pi

pj

⇒ ui(·)
pi

=
uj(·)
pj

These have the economic interpretation that the (negative of the) slope of
the indifference curve (the MRS) is equal to the ratio of prices. But since the
slope of the budget is the negative of the ratio of prices, this implies that a
tangency of an indifference curve to the budget must occur at the optimum.7

The second form tells us that the marginal utility gained from the last
dollar’s worth of consumption must be equalized across all goods at the
optimum, another useful thing to keep in mind. Also note that λ∗ = ui(·)/pi,
so that the level of the multiplier gives us the “marginal utility of budget”.
This can also be seen by considering the fact that ∂L/∂m = λ.

The marginal rate of substitution term depends on the amounts of the
goods consumed. In other words ui(·)/uj(·) is a function of x. Requiring that
this ratio take on some specific value thus implicitly defines a relationship
between the xi. This tangency condition thus translates into a locus of
consumption bundles where the slope of the indifference curve has the given
value. This locus is termed the Income Expansion path. This is due to the
fact that this locus would be traced out if we were to keep prices constant but
increased income, thus shifting the budget out (in a parallel fashion.) Since
the budget line provides another locus of consumption bundles, namely those
which are affordable at a given income level, solving for the demands then
boils down to solving for the intersection of these lines. Now note that the

7If you ever get confused about which term “goes on top” remember the following
derivation: An indifference curve is defined by u(x, y) = u. Taking a total differential we
obtain ux(·)dx + uy(·)dy = 0, and hence dy/dx = −ux(·)/uy(·). The same works for the
budget. As a last resort you can verify that it is the term for the horizontal axis which is
“on top”.
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Figure 2.1: Consumer Optimum: The tangency condition

income expansion path for both homothetic and quasi-linear preferences is
linear. Hence solving for demands is particularly simple, since, in geometric
terms, we are looking for the intersection of a line and a (hyper-) plane.

In terms of a diagram, we have the usual picture of a set of indifference
curves superimposed on a budget set, given in Figure 2.1. The optimum
occurs on the highest indifference curve feasible for the budget, i.e., where
there is a tangency between the budget and an indifference curve.

Note a couple of things: For one, the usual characterization of “tangency
to budget” is only valid if we are not at a corner solution and can compute the
relevant slopes. If we are at a corner solution (and this might happen either
because our budget ‘stops’ before it reaches the axis or because our indiffer-
ence curves intersect an axis, as for quasi-linear preferences) then we really
need to consider “complementary slackness conditions”. Basically we will
have to consider all the non-negativity constraints which we have currently
omitted, and their multipliers. We will not bother with that, however. In
this course such cases will be fairly obvious and can be solved by inspection.
The key thing to remember, which follows from the condition on per dollar
marginal utilities, is that if we are at a corner then the indifference curve
must lie outside the budget. That means that on the horizontal axis the
indifference curve is steeper than the budget, on the vertical axis it is flatter.
Finally, if the indifference curve or the budget have a kink, then no tangency
exists in strict mathematical terms (since we do not have differentiability),
but we will often loosely refer to such a case as a “tangency” anyways.
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Figure 2.2: Corner Solutions: Lack of tangency

Properties

As mentioned, the above problem gives rise first of all to the (ordinary)
demand functions. These tell us the relationship of demand behaviour to the
parameters of the problem, namely the price vector and the income:

x(p,m) = argmaxx∈X { u(x) + λ(m− p · x) }.

The other result of solving the optimization problem is the indirect utility
function, which tells us the highest level of utility actually achieved:

v(p,m) = maxx∈X { u(x) + λ(m− p · x) }.

This is useless per sè, but the function is nevertheless useful for some appli-
cations (duality!)

What properties can we establish for these? Two important properties
of the (ordinary) demand functions are

Theorem 3 The (ordinary) demand x(p,m) derived from a continuous util-
ity function representing rational preferences which are monotonic satisfies:
homogeneous of degree zero: x(p,m) = x(αp, αm), ∀p,m; α > 0;
Walras’ Law: p · x(p,m) = m, ∀p >> 0, m > 0.

Walras’ Law has two important implications known as Engel and Cournot
Aggregation. Both are derived by simple differentiation of Walras’ Law. En-
gel Aggregation refers to the fact that a change in consumer income must
all be spent. Cournot Aggregation refers to the fact that a change in a price
may not change total expenditure.

Definition 13 Engel Aggregation:
∑n

i=1 pi
∂xi(·)
∂m

= 1, or more compactly p ·Dpx(p,m) = 1.
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Definition 14 Cournot Aggregation:
∑n

i=1 pi
∂xi(·)
∂pk

+ xk(p,m) = 0,∀k = 1, . . . , n, or p ·Dpx(p,m) + x(p,m)T = 0T .

(Here 0T is a row vector of zeros.)

Sometimes it is more useful to write these in terms of elasticities (since that
is what much of econometrics estimates)8.

Define si(p,m) = pixi(p,m)/m, the expenditure share of commodity i
(note how for a Cobb-Douglas utility function this is constant!) Let εia(·)
denote the elasticity of demand for good i with respect to the variable a.
Then the above aggregation laws can be expressed as

n
∑

i=i

si(p,m)εim(p,m) = 1 and
n
∑

i=i

si(p,m)εik(p,m)i + sk(p,m) = 0.

We will not bother here with the properties of the indirect utility func-
tion aside from providing Roy’s Identity:

x(p,m) =
−1

∂v(p,m)/∂m
· ∇pv(p,m) =

[

−∂v(·)/∂pl

∂v(·)/∂m

]

n×1

.

This is “just” an application of the envelope theorem, or can be derived
explicitly by using the first order conditions. The reason this is useful is
that it is mathematically much easier to differentiate, compared to solving
L + 1 nonlinear equations. Hence a problem can be presented by stating an
indirect utility function and then differentiating to get demands, a technique
often employed in trade theory.9

Finally, note that we have no statements about demand other than
the ones above. In particular, it is not necessarily true that (ordinary)
demand curves slope downwards (∂x(p,m)/∂pi ≤ 0.) Similarly, the income
derivatives can take any sign, and we call a good normal if ∂x(p,m)/∂m ≥ 0,
while we call it inferior if ∂x(p,m)/∂m ≤ 0.

8Recall that often the logarithms of variables are regressed. A coefficient on the right
hand side thus represents dlnx

dlny
= dx

dy
y
x

9In graduate courses the properties of the indirect utility function get considerable
attention for this reason. It can be shown that any function having the the requisite
properties can be the indirect utility function for some consumer.
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2.2.2 Expenditure Minimization and the Slutsky equa-
tion

Another way to consider the consumer’s problem is to think of the least
expenditure needed to achieve a given level of utility. Basically, this reverses
the process from above. We now fix the indifference curve we want to achieve
and minimize the budget subject to that:

e(p, u) = minx∈X { p · x + λ(ū− u(x)) }.

The function which tells us the least expenditure for a given price vector and
utility level is called the expenditure function. The optimal choices for
this problem,

h(p, u) = argminx∈X { p · x + λ(ū− u(x)) },

are the Hicksian demand functions. These are unobservable (since they
depend on the unobservable utility level) but extremely useful. The reason is
that the Hicksian demand for good i, hi(p, u), is (by the envelope theorem)
the first partial derivative of the expenditure function with respect to pi. It
follows that the first derivative of the Hicksian demand function with respect
to a price is the second partial derivative of the expenditure function. So
what, you ask? Consider the following:

Theorem 4 If u(x) is continuous and represents monotonic, rational prefer-
ences and if p >> 0, then e(p, u) is homogeneous of degree 1 in prices;
continuous in u and p; concave in p; increasing in u and nonde-
creasing in p.

We will not prove these properties, but they are quite intuitive. For concavity
in p consider the following: Fix an indifference curve and 2 tangent budget
lines to it. A linear combination of prices at the same income is another
budget line which goes through the intersection point of the two original
budgets and has intermediate axis intercepts. Clearly, it cannot touch or
intersect the indifference curve, indicating that higher expenditure (income)
would be needed to reach that particular utility level.

So, since the expenditure function is concave in prices, this means that
the matrix of second partials, Dp∇pe(p, u), is negative semi-definite. Also,
by Young’s Theorem, this matrix is symmetric. But it is equal to the matrix
of first partials of the Hicksian demands, which therefore is also symmetric
and negative semi-definite!
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Why is this useful information? It means that Hicksian demand curves
do not slope upwards, since negative semi-definiteness requires negative main
diagonal entries. This is a statement which we could not make about ordinary
demand curves. Also, the cross-price effects of any two goods are equal. This
certainly is unexpected, since it requires that the effect of a change in the
price of gasoline on bananas is the same as the effect of a change in the
price of bananas on gasoline. Finally, Hicksian demands are homogeneous of
degree zero in prices.

As mentioned, the Hicksian demand curves are unobservable. So why
should we be excited about having strong properties for them, if they can
never be tested? One key reason is the Slutsky equation, which links the
unobservable Hicksian demands to the observable ordinary demands. We
proceed as follows: The fact that we are talking about two ways to look at
the same optimal point means that

xi(p, e(p, u)) = hi(p, u),

where we recognize the fact that the income and expenditure level must
coincide in the two problems. Now taking a derivate of both sides we get

∂xi(p, e(p, u))

∂pj

+
∂xi(p, e(p, u))

∂m

∂e(p, u)

∂pj

=
∂hi(p, u)

∂pj

,

and using the envelope theorem on the definition of the expenditure function
as well as utilizing the original equality we simplify this to

∂xi(p, e(p, u))

∂pj

+
∂xi(p, e(p, u))

∂m
xj(p, u) =

∂hi(p, u)

∂pj

.

The right hand side of this is a typical element of the symmetric and negative
semi-definite matrix of price partials of the Hicksian demands. The equality
then implies that the matrix of corresponding left hand sides, termed the
Slutsky matrix, is also symmetric and negative semi-definite.

Reordering any such typical element we get the Slutsky equation:

∂xi(p, e(p, u))

∂pj

=
∂hi(p, u)

∂pj

− ∂xi(p, e(p, u))

∂m
xj(p, e(p, u)).

This tells us that for any good the total response to a change in price is
composed of a substitution effect and an income effect. Therefore ordinary
demands can slope upward if there is a large enough negative income effect
— which means that we need an inferior good.
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It bears repeating that homogeneous demands satisfying Walras’ Law
with a symmetric, negative semi-definite Slutsky matrix is all that our theory
can say about the consumer. Nothing more can be said unless one is willing
to assume particular functional forms.

2.3 General Equilibrium

What remains is to model the determination of equilibrium prices. This is
not really done in economics, however. Since in the standard model every
consumer (and every firm, in a production model) takes prices as given, there
is nobody to set prices. Instead a “Walrasian auctioneer” is imagined, who
somehow announces prices. The story (and it is nothing more) is that the
auctioneer announces prices, and checks if all markets clear at those prices.
If not, no trades occur but the prices are adjusted (in the way first suggested
in Econ 101: markets with excess demands experience a price increase, those
with excess supply a price decrease, the “tâtonnement” process.) Of course,
all agents other than the auctioneer must be unaware of this process some-
how — otherwise they might start to mis-state demands and supplies in
order to affect prices. In any case, there really is no model of equilibrium
price determination. This does, of course, not stop us from defining what an
equilibrium price is! At its most cynical, equilibrium can be viewed simply as
a consistency condition which makes our model logically consistent. In par-
ticular, it must be true that, in equilibrium, no consumer finds it impossible
to trade the amounts desired at the announced market prices. That is, a key
requirement of any equilibrium price vector will be that all economic agents
can maximize their objective functions and carry out the resulting plans.
Since aggregate demands and supplies are the sum of individual demands
and supplies it follows that aggregate demand and supply must balance in
equilibrium — all markets must clear!

In what follows we will only review 2 special cases of general equilibrium,
the pure exchange economy, and the one consumer, one producer economy.

2.3.1 Pure Exchange

Consider an economy with two goods, i = 1, 2, and two consumers, l = 1, 2.
Each consumer has an initial endowment ωl = (ωl

1, ω
l
2) of the two goods,

and preferences ºj on <2 which can be represented by some utility function
uj(x) : <2

+ 7→ <. The total endowment of good i in the economy is the
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sum of the consumers’ endowments, so there are ω1 = ω1
1 + ω2

1 units of good
1, and ω1 = ω1

2 + ω2
2 units of good 2.

We can now define the following:

Definition 15 An allocation x = (x1, x2) is an assignment of a nonnega-
tive consumption vector xl ∈ <2 to each consumer.

Definition 16 An allocation is feasible if
∑2

l=1 xl
i =

∑2
l=1 ωl

i for i = 1, 2.

Note that feasibility implies that if consumer 1 consumes (x1
1, x

1
2) in

some feasible allocation, then consumer 2 must consume (ω1 − x1
1, ω2 − x1

2).
This fact allows us to represent the set of feasible allocations by a box in
<2. Suppose we measure good 1 along the horizontal axis and good 2 along
the vertical axis. Then the feasible allocations lie anywhere in the rectangle
formed by the origin and the point (ω1, ω2). Furthermore, if we measure
consumer 1’s consumption from the usual origin (bottom left), then for any
consumption point x we can read off consumer 2’s consumption by measuring
from the right top ‘origin’ (the point ω.)

Also note that a budget line for consumer 1, defined by p · x = p · ω1

passes through both the endowment point and the allocation, and has a slope
of p1/p2. But if we consider consumer 2’s budget line at these prices we find
that it passes through the same two points and has, measured from consumer
2’s origin on the top right, the same slope. Hence any price vector defines
a line through the endowment point which divides the feasible allocations
into the budget sets for the two consumers. These budget sets only have the
budget line in common.

As a final piece, we may represent each consumer’s preferences by an
indifference map in the usual fashion, only that consumer 2’s consumption
set is measured from the top right origin (at ω in consumer 1’s coordinates.)
Note that both consumer’s indifference curves are not limited to lie within
the box. Feasibility is a problem for the economy, not the consumer. Indeed,
the consumer is assumed to be unaware of the actual amount of the goods
in the economy. Hence each consumer’s budget and indifference maps are
defined in the usual fashion over the respective consumer’s consumption set,
which here is all of <2

+, measured from the usual origin for consumer 1 and
measured down and to the left from ω for consumer 2! (More bluntly, both
a consumer’s budget line and her indifference curves can “leave the box”.)
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Figure 2.3 represents an example of such a pure exchange economy.
Here we have assumed that u1(x) = min{x1, x2}; ω1 = (10, 5), while u2(x) =
x1 + x2; ω1 = (10, 10).
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Figure 2.3: An Edgeworth Box

Aside of the notion of feasibility the other key concept in general equi-
librium analysis is that of Pareto efficiency, or Pareto optimality.

Definition 17 A feasible allocation x is Pareto Efficient if there does not
exist a feasible allocation y such that y ºl x, ∀j, and ∃j 3 y Âl x.

A slightly weaker criterion also exists to deal with preferences that are
not strictly monotonic:

Definition 18 A feasible allocation x is weakly Pareto Efficient if there
does not exist a feasible allocation y such that y Âl x, ∀j.

In words, Pareto efficiency (PO) requires that no feasible alternative
exist which leaves all consumers as well off and at least one better off. Weak
Pareto efficiency requires that no feasible allocation exist which makes all
consumers better off.

Note that these definitions can be tricky to apply since an allocation is
defined as efficient if something is not true. Moreover, there are infinitely
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many other feasible allocations for any given one we wish to check. A brute
force approach therefore is not the smart thing to do. Instead we can proceed
as follows: Suppose we wish to check for PO of an allocation, say (ω1, ω2)
in Figure 2.3. Does there exist a feasible alternative which would make one
consumer better off and not hurt the other? The consumers’ indifference
curves through the allocation ω will tell us allocations for each consumer
which are at least as good. Allocations below a consumer’s indifference curve
make her worse off, those above better off. In Figure 2.4 these indifference
curves have been drawn in.
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Figure 2.4: Pareto Optimal Allocations

Note that any allocation in the triangular region which contains alloca-
tions above both indifference curves will do as the alternative that makes ω
not PO (and indeed not weakly PO either.) Next, note that ω was in no
way special: all allocations below the “kink line” of consumer 1 would give
rise to just the same diagram. Hence none of those can be PO either. The
allocations above the kink line are just mirror images, they are not PO either.
That leaves the kink line itself, with allocations such as z = ((11, 11), (9, 4)).
For such allocations the weakly preferred sets of the two consumers do not
intersect, hence it is not possible to make one better off while not reducing
the utility of the other. Neither is it possible to make both better off. Hence
these allocations are weakly PO and PO.

Finally, we need to consider the boundaries separately. The axes of
consumer 1 are no problem, they give rise to a diagram just like that for ω,
in fact. But how about points such as q, which lie on the top boundary of the
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box to the right of the intersection with the kink line? For such points both
consumers cannot be made better off, since there exists no feasible allocation
which makes consumer 1 better off. Thus, the allocation q is weakly PO.
However, by moving left we can make consumer 2 better off without reducing
the utility of consumer 1, so q is not PO in the strict sense.

The set of Pareto optimal allocations in Figure 2.4 therefore is the kink
line of consumer 1, that is all allocations
{x ∈ <4|x1

1 = x1
2, x

1
1 ≤ 15, x2

1 = 20− x1
1, x

2
2 = 15− x1

2, x
l
i ≥ 0 ∀i, l = 1, 2}.

You can see from the above example that the difference between PO
and weak PO can only arise for preferences which have vertical or horizontal
sections that could coincide with a boundary.

Theorem 5 All Pareto Optimal allocations are weakly Pareto optimal. If all
preferences are strictly monotonic, then all weakly Pareto optimal allocations
are also Pareto optimal.

Finally note that for convex preferences and differentiable utility func-
tions the condition that the weakly preferred sets be disjoint translates into
the familiar requirement that the indifference curves of the consumers must
be tangent, that is, an allocation is Pareto optimal if the consumers’ marginal
rates of substitution equal.

We are now ready to define equilibrium and to see how it relates to the
above diagram.

Definition 19 A Walrasian (competitive) equilibrium for a pure ex-
change economy is a price vector p∗ and allocation x∗ such that
(1) (optimality) for each consumer l, (xl)∗ ºl xl ∀xl 3 p∗xl = p∗ωl;
(2) (feasibility) for each good i,

∑

j(x
l
i)
∗ =

∑

j ωl
i.

This definition is the most basic we can give, and at the same time
includes all others. For example, you may remember from introductory eco-
nomics that a general equilibrium is achieved when “demand equals supply”.
But supply in this case is the sum of endowments. Demand means aggre-
gate demand, that is, the sum of all consumers’ demands. But a consumer’s
demand has been defined as a utility maximizing bundle at a given price —
hence the notion of demand includes the optimality condition above. We
therefore can define equilibrium in the following way:



32 L-A. Busch, Microeconomics May2004

Definition 20 A Walrasian (competitive) equilibrium for a pure ex-
change economy is a price vector p∗ and allocation x∗ such that x∗ = x(p∗),
∑

j xl
i(p

∗) =
∑

j ωl
i, for each good i, and for each consumer l, xl(p) =

argmaxx{uj(x) s.t. p · xl = p · ωl}.

For an Edgeworth box we can also define equilibrium in yet a third
way — as the intersection of consumers’ offer curves. An offer curve is the
analogue of a demand curve, only drawn in commodity space, not commodity-
price space.

Definition 21 The offer curve is the locus of all optimal consumption
bundles (in X) as price changes:
{x ∈ X|∃p 3 ∀y with p · y = p · ω, x ºj y, and p · x = p · ω} or alternatively
{x ∈ X|∃p 3 x = argmax{uj(x) s.t. p · x = p · ωl} }.

Note how the notion of an offer curve incorporates optimality, so that
the intersection of consumers’ offer curves, lying on both offer curves, is
optimal for both consumers. Since offer curves cannot intersect outside the
Edgeworth box, feasibility is also guaranteed.10

We thus have different ways of finding an equilibrium allocation in a pure
exchange economy, and depending on the setting one may be more convenient
than another. For example, should both consumers have differentiable utility
functions we can normally most easily find demands, and then set demand
equal to supply. This is simplified by Walras’ Law. Let z(p) denote the
aggregate excess demand vector: z(p) =

∑

j(x
l(p)− ωl). Then we have.

Definition 22 Walras’ Law: p · z(p) = 0 ∀p ∈ <n
+.

Why is this so? It follows from Walras’ Law for each consumer, requiring
that each consumer l’s demands exhaust the budget, so that the total value
of excess demand for a consumer is zero, for all prices, by definition. Hence,
summing across all consumers the aggregate value of excess demand must also
be zero. In an equilibrium aggregate demand is equal to aggregate supply,11

that is, summing across consumers the excess demand must equal zero for
each good, and hence the value must be zero. Hence, if n− 1 markets clear

10This argument assumes as given that offer curves cannot intersect outside the feasible
set. Why? You should be able to argue/prove this!

11Yet another definition of a Walrasian equilibrium is z(p) = 0!
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the value of the excess demand of the nth market must be zero, and this can
only be the case if either the price of the good is zero or the actual aggregate
excess demand itself. Thus it suffices to work with n− 1 markets. The other
market will “take care of itself.”

In practice we are also free to choose one of the prices, since we have
already shown that (Walrasian) demand is homogeneous of degree zero in
prices for each consumer (remember that ml = p·ωl here), and thus aggregate
demand must also be homogeneous of degree zero.

So, suppose the economy consists of two Cobb-Douglas consumers with
parameters α and β and endowments ((ω1

1, ω
1
2), (ω

2
1, ω

2
2)). Demands are

(

αp · ω1

p1

,
(1− α)p · ω1

p2

)

, and

(

βp · ω2

p1

,
(1− β)p · ω2

p2

)

.

Hence the equilibrium price ratio p1/p2 is

p∗ =
αω1

2 + βω2
2

(1− α)ω1
1 + (1− β)ω2

1

.

The allocation then is obtained by substituting the price vector back into the
consumer’s demands and simplifying.

On the other hand, if we have non-differentiable preferences it is most
often more convenient to use the offer curve approach. For example, a con-
sumer with Leontief preferences will consume on the kink line no matter
what the price ratio. If such a consumer where paired with a consumer with
perfect substitute preferences, such as in Figure 2.3, we know the price ratio
by inspection to be equal to the perfect substitute consumer’s MRS (in Fig-
ure 2.3 that is 1.) Why? Since a prefect substitute consumer will normally
consume only one of the goods, and only consumes both if the MRS equals
the price ratio. The allocation then can be derived as the intersection of
consumer 1’s kink line with the indifference curve through the endowment
point for consumer 2: in Figure 2.3 the equilibrium allocation thus would be
(x1, x2) = ((7.5, 7.5), (12.5, 7.5)).

2.3.2 A simple production economy

The second simple case of interest is a production economy with one con-
sumer, one firm and 2 goods, leisure and a consumption good. This case is
also often used to demonstrate the second welfare theorem in its most simple
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setting. Recall that the second welfare theorem states that a Pareto efficient
allocation can be “decentralized”, that is, can be achieved as a competitive
equilibrium provided that endowments are appropriately redistributed.

Let us therefore approach this problem as is often done in macro eco-
nomics. Consider the social planner’s problem, which in this case is equiv-
alent to the problem of the consumer who owns the production technology
directly. The consumer has preferences over the two goods, leisure and con-
sumption, denoted by l and c respectively, represented by the utility function
u(c, l). It has the usual properties (that is, it has positive first partials and
is quasi-concave.) The consumer has an endowment of leisure, L̄. Time not
consumed as leisure is work, x = L̄ − l, and the consumption good c can
be produced according to a production function c = f(x). Assume that
it exhibits non-increasing returns to scale (so f ′(·) > 0; f ′′(·) ≤ 0.) The
consumer’s problem then is

maxc,l{u(c, l) s.t. c = f(L̄− l) }

or, substituting out for c

maxlu(f(L̄− l), l).

The FOC for this problem is −uc(·)f ′(·) + ul(·) = 0, or more usefully,
f ′(·) = ul(·)/uc(·). This tells us that the consumer will equate the marginal
product of spending more time at work with the Marginal Rate of Substi-
tution between leisure time and consumption — which measures the cost of
leisure time to him.

Now consider a competitive private owner-ship economy in which the
consumer sells work time to a firm and buys the output of the firm. The
consumers owns all shares of the firm, so that firm profits are part of consumer
income. Suppose the market price for work, x, is denoted by w (for wage),
and the price of the output c is denoted by p.

The firm’s problem is maxxpf(x)−wx with first order condition pf ′(x∗) =
w. The consumer’s problem is maxc,l{u(c, l) s.t. π(p, w) + pc = w(L̄ − l) }.
Here π(p, w) denotes firm profits. The FOCs for this lead to the condition
ul(·)/uc(·) = w/p. Hence the same allocation is characterized as in the plan-
ner’s problem, as promised by the second welfare theorem. (Review Problem
12 provides a numerical example of the above.)

Note that in this economy there is a unique Pareto optimal point if
f ′′(·) < 0. Since a competitive equilibrium must be PO, it suffices to find
the PO allocation and you have also found the equilibrium! This “trick” is
often exploited in macro growth models, for example.
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2.4 Review Problems

It is useful exercise to derive both kinds of demand for the various functions
you might commonly encounter. The usual functions are
Cobb-Douglas: u(x1, x2) = xα

1 x
(1−α)
2 , α ∈ (0, 1);

Quasi-Linear: u(x1, x2) = f(x1) + x2, f ′ > 0, f ′′ < 0;
Perfect Substitute: u(x1, x2) = ax1 + x2, a > 0;
Leontief: u(x1, x2) = min{ax1, x2}, a > 0;
“Kinked”: u(x1, x2) = min{ax1 + x2, x1 + bx2}, a, b > 0.
The first thing to do is to determine how the indifference curves for each of
these look like. I strongly recommend that you do this. Familiarity with the
standard utility functions is assumed in class and in exams.

Budgets are normally easy and are often straight lines. However, they
can have kinks. For example, consider the budget for the following problem:
A consumer has an endowment bundle of (10, 10) and if he wants to increase
his x2 consumption he can trade 2 x1 for 1 x2, while to increase x1 consump-
tion he can trade 2 x2 for 1 x1. Such budgets will arise especially in inter
temporal problems, where consumers’ borrowing and lending rates may not
be the same.

You can now combine any kind of budget with any of the above utility
functions and solve for the income expansion paths (diagrammatically), and
the demands, both ordinary and Hicksian.

You may also want to refresh your knowledge on (price-)offer curves.
This is the locus of demands in (x1, x2) space which is traced out as one
price, say p1, is varied while p2 and m stay constant.

Question 1: Let X = {x, y, z, w} and let (B, C(·)) be a choice structure
with B = {{x, y, z}, {x, z, w}, {w, z, y}, {x}, {y, w}, {z, x}, {x,w}}.

a) Provide a C(·) which satisfies the weak axiom.
b) Does there exist a preference relation on X which rationalizes your

C(·) on B?
c) Is that preference relation rational?
d) Given this B and some choice rule which satisfies the weak axiom, are

we guaranteed that the choices could be derived from a rational preference
relation?

e) Since you probably ‘cheated’ in part a) by thinking of rational pref-
erences first and then getting the choice rule from that: write down a choice
rule C(·) for the above B which does satisfy the weak axiom but can NOT
be rationalized by a preference relation.
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Question 2: Consider a consumer endowed with 16 hours of leisure time and
$100 of initial wealth. There are only two goods, leisure and wealth/aggregate
consumption, so a consumption bundle can be denoted by (l, c). Extend the
definition of the budget set to be the set of all feasible (l, c) vectors, i.e.,
B = {(l, c) | 0 ≤ l ≤ 16, c feasible}, where feasibility of consumption c
will be determined by total income, consisting of endowed income and work
income. In particular note that the boundary of the budget set, B̄, is the set
of maximal feasible consumption for any given leisure level. Now, in view of
this, what is the budget set and its boundary in the following cases (you may
want to provide a well labelled diagram, and/or a definition of B̄ instead of
a set definition for B.) Is the budget set convex?

a) There are two jobs available, each of which can be worked at for no
more than 8 hours. An additional restriction is that you have to work at one
job full time (8 hours) before you can start the other job. Job 1 pays $12 per
hour for the first 6 hours and $16 per hour for the next 2 hours. Job 2 pays
$8 per hour for the first two hours and $14 per hour for the next 6 hours.

b) The same situation as in [a] above, but job 2 now pays $14 2/3 per
hour for the next 6 hours (after the first 2).

c) Suppose we drop the restriction that you have to work one job full
time before you can work the other. (So you could work one job for 5 hours
and the other for 3, for example, which was not possible previously.) Why
does it (does it not) matter?

d) What if instead there are four jobs, with job (i) paying $12 per hour
for up to 6 hours, job (ii) paying $16 per hour for up to 2 hours, (iii) paying
$8 per hour for up to 2 hours and (iv) paying $14 per hour for up to 6 hours?
You may work any combination of jobs, each up to its maximum number of
hours.

Question 3: A consumer’s preferences over 2 goods can be represented
by the utility function u(x) = x0.3

1 x0.6
2 . Solve for the consumer’s demand

function. If the consumer’s endowment is ω = (412, 72) and the price vector
is p = (3, 1), what is the quantity demanded?

Question 4: A consumer’s preferences are represented by the utility function

U(x1, x2) = min{x1 + 5x2, 2x1 + 2x2, 5x1 + x2}.

Solve both the utility maximization and the expenditure minimization prob-
lem for this consumer. (Note the the Walrasian and Hicksian demands are
not functions in this case.) Also draw the price offer curve for p1 variable,
m and p2 fixed. [Note: Solving the problems does not require differential
calculus techniques.]
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Question 5: The elasticity of substitution is defined as

ε1,2 = −∂ [x1(p, w)/x2(p, w)]

∂ [p1/p2]

p1/p2

x1(p, w)/x2(p, w)
.

What does this elasticity measure? Why might it be of interest?

Question 6: The utility function u(x1, x2) = (xρ
1 +xρ

2)
(1/ρ), where ρ < 1 and

ρ 6= 0, is called the Constant Elasticity of Substitution utility function. The
shape of its indifference curves depends on the parameter ρ. Demonstrate
that the function looks like a Leontief function min{x1, x2} as ρ→ −∞; like
a Cobb-Douglas function x1x2 as ρ → 0; like a perfect substitute function
x1 + x2 as ρ→ 1.

Question 7: A consumer’s preferences over 3 goods can be represented by
the utility function u(x) = x1 + lnx2 + 2lnx3. Derive Marshallian (ordinary)
demand.

Question 8: Consider a 2 good, 2 consumer economy. Consumer A has
preferences represented by uA(x) = 4x1 + 3x2. Consumer B has preferences
represented by uB(x) = 3lnx1 + 4lnx2. Suppose consumer A’s endowment is
ωA = (12, 9) while consumer B’s endowment is ωB = (8, 11). What is the
competitive equilibrium of this economy?

Question 9: Consider a 2 good, 2 consumer economy. Consumer A has
preferences represented by uA(x) = min{4x1 + 3x2, 3x1 + 4x2}. Consumer B
has preferences represented by uB(x) = 3x1 + 4lnx2. Suppose consumer A’s
endowment is ωA = (12, 9) while consumer B’s endowment is ωB = (8, 11).
What is the competitive equilibrium of this economy?

Question 10∗: Suppose (B, C(·)) satisfies the weak axiom. Consider the
following two strict preference relations: Â defined by xÂy ⇐⇒ ∃B ∈ B 3
x, y ∈ B, x ∈ C(B), y /∈ C(B); and Â∗ defined by xÂ∗y ⇐⇒ ∃B ∈ B 3
x, y ∈ B, x ∈ C(B) and 6 ∃B ′ ∈ B 3 x, y ∈ B′, y ∈ C(B′). Prove that these
two strict preference relations give the same relation on X. Is this still true
if the weak axiom is not satisfied by C(·)? (Counter-example suffices.)

Question 11∗: Consider a 2 good, 2 consumer economy. Consumer A has
preferences represented by uA(x) = αx1 + x2. Consumer B has preferences
represented by uB(x) = βlnx1 + lnx2.

a) Suppose consumer A’s endowment is ωA = (10, 10) while consumer
B’s endowment is ωB = (10, 10). What is the competitive equilibrium of this
economy?

b) Suppose α = 2, β = 1 and fix the total size of the economy at 20
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units of each good as above. As you have seen above, there are two kinds
of equilibria, interior, and boundary. For which endowments will interior
equilibria obtain, for which ones boundary equilibria?

Question 12∗: Consider a private-ownership production economy with one
consumption good, one firm and one consumer. Suppose technology is given
by c = f(x) = 4

√
x. Let consumer preferences be represented by u(c, l) =

lnc + 1
2
lnl and let the consumer have a leisure endowment of L̄ = 16. a)

Solve the social planner’s problem. b) Solve for the competitive equi-
librium of the private ownership economy.



Chapter 3

Inter-temporal Economics

In this chapter we will re-label the basic model in order to focus the analysis
on the question of inter-temporal choice. This will reveal information about
borrowing and savings behaviour and the relationship between interest rates
and the time-preferences of consumers. In particular, we will see that inter-
est rates are just another way to express a price ratio between time dated
commodities.

3.1 The consumer’s problem

In what follows, we will consider the simple case of just two commodities,
consumption today — denoted c1 — and consumption tomorrow — c2. These
take the place of the two commodities, say apples and oranges, in the stan-
dard model of the previous chapter. Since it is somewhat meaningless to
speak of income in a two period model, indeed, part of our job here is to
find out how to deal with and evaluate income streams, we will employ an
endowment model. The consumer is assumed to have an endowment of the
consumption good in each period, which we will denote by m1 and m2, re-
spectively. The consumer is assumed to have preferences over consumption
in both periods, represented by the utility function u(c1, c2).

39
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3.1.1 Deriving the budget set

Our first job will be to determine how the consumer’s budget may be ex-
pressed in this setting. That, of course, will depend on the technology for
storing the good and on what markets exist. Note first of all that it is never
possible to consume something before you have it: the consumer will not be
able to consume in period 1 any of the endowment in period 2. In contrast,
it may be possible to store the good, so that quantities of the period 1 en-
dowment not consumed in period 1 are available for consumption in period
2. Of course, such storage may be subject to losses (depreciation). Ideally,
the consumer has some investment technology (such as planting seeds) which
allows the consumer to “invest” (denoting that the good is used up, but not
in utility generating consumption) period 1 units in order to create period
2 units. Finally, the consumer may be able to access markets, which allow
lending and borrowing. We consider these in turn.

No Storage, No Investment, No Markets

If there is no storage and no investment, then anything not consumed today
will be lost forever and consumption cannot be postponed to tomorrow. You
may want to think of this as 100% depreciation of any stored quantity. No
markets means that there is also no way to trade with somebody else in order
to either move consumption forward or backward in time. The consumer
finds himself therefore in the economically trivial case where he is forced to
consume precisely the endowment bundle. The budget set then is just that
one point: B = {c ∈ <2

+|ci = mi, i = 1, 2}.

Storage, No Investment, No Markets

This is a slightly more interesting case where consumption can be postponed.
Since there are no markets, no borrowing against future endowments is pos-
sible. Storage is usually not perfect. Let δ ∈ (0, 1) denote the rate of depre-
ciation — for example, our consumption good may spoil, so that the outside
layers of the meat will not be edible in the next period, or pests may eat
some of the stuff while it is in storage (a serious problem in many countries.)
A typical budget set then is

B = {(c1, c2) | c2 ≤ m2 + (1− δ)(m1 − c1), 0 ≤ c1 ≤ m1}.
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The quantity (m1 − c1) in this expression is the amount of period 1 endow-
ment not consumed in period 1, usually called savings, and denoted S. We
can therefore express the consumer’s utility maximization problem in three
equivalent ways:

maxc1,c2∈Bu(c)

maxc1≤m1
u(c1,m2 + (1− δ)(m1 − c1))

maxS≤m1
u(m1 − S,m2 + (1− δ)S)

In the second case only the level of consumption in period 1, c1, is a choice
variable. It implies the consumption in period 2. The third line simply rela-
bels that same maximization and has savings in period 1 — whatever is not
consumed — as the choice variable. All of these will give the same answer, of
course! The left diagram in Figure 3.1 gives the diagrammatic representation
of this optimization problem (with two different (!) preferences indicated by
representative indifference curves.)

One thing to be careful about is the requirement that 0 ≤ c1 ≤ m1.
We could employ Kuhn-Tucker conditions to deal with this constraint, but
usually it suffices to check after the fact. For example, a consumer with CD
preferences u(c1, c2) = c1c2 faced with a price ratio of unity would like to
consume where c1 = c2 (You ought to verify this!) However, if the endow-
ment happens to be (m1,m2) = (5, 25) then this is clearly impossible. We
therefore conclude that there is a corner solution and consumption occurs at
the endowment point m.

Storage, Investment, No Markets

How is the above case changed if investment is possible? Here I am thinking
of physical investment, such as planting, not “market investment”, as in
lending. Suppose then that the consumer has the same storage possibility as
previously, but also has access to an investment technology. We will model
this technology just as if it were a firm, and specify a function that gives
the returns for any investment level: y = f(x). This function must either
have constant returns to scale or decreasing returns to scale for things to
work easily (and for the second order conditions of the utility maximization
problem to hold.) Suppose the technology exhibits CRS. In that case the
marginal return of investment, f ′(x), is constant. It either is larger or smaller
than the return of storage, which is 1 − δ. Since the consumer will want to
maximize the budget set, he will choose whichever has the higher return, so
if f ′(x) > (1− δ) the consumer will invest, and he will store otherwise. The
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budget then is

B =

{

{(c1, c2) | c2 ≤ m2 + f(m1−c1), 0≤c1 ≤m1} if (1− δ) < f ′()
{(c1, c2) | c2 ≤ m2 + (1−δ)(m1−c1), 0≤c1≤m1} otherwise

What if the investment technology exhibits decreasing returns to scale?
Suppose the most interesting case, where f ′(x) > (1 − δ) for low x, but the
opposite is true for high x. Suppose further that not only the marginal return
falls, but that the case is one where f(m1) < (1 − δ)m1, so that the total
return will be below that of storage if all first period endowment is invested.
What will be the budget set? Clearly (?) any initial amounts not consumed
in period 1 should be invested, not stored. But when should the consumer
stop investing? The maximal investment x is defined by f ′(x) = (1−δ). Any
additional unit of foregone period 1 consumption should be stored, since the
marginal return of storage now exceeds that of further investment. The
budget then is

B =







{(c1, c2) | c2 ≤ m2 + f(m1 − c1),m1 − x ≤ c1 ≤ m1}
{(c1, c2) | c2 ≤ m2 + f(x) + (1− δ)(m1 − x− c1), 0 ≤ c1 ≤ m1 − x}
where x is defined by (1− δ) = f ′(x)

Storage, No Investment, Full Markets

We now allow the consumer to store consumption between periods 1 and
2, with some depreciation, and to trade consumption on markets. Instead
of the usual prices, which are an expression of the exchange ratio of, say
good 2 for good 1, we normally express things in terms of interest rates
when we deal with time. Of course, one can always convert between the two
without much trouble if some care is taken. The key idea is that a loan of P
dollars today will pay back the principal P plus some interest income. At an
interest rate r, this is an additional rP dollars. Thus, 1 dollar today “buys”
(1 + r) dollars tomorrow. Put differently, the price of 1 of today’s dollars
is (1 + r) of tomorrow’s. Similarly, for a payment of F dollars tomorrow,
how many dollars would somebody be willing to pay? F/(1 + r), of course,
since F/(1+ r)+ rF/(1+ r) = F . We therefore have an equivalence between
P dollars today and F dollars tomorrow, provided that P (1 + r) = F , or
P = F/(1 + r). By convention the value P is called the present value of
F , while F is the future value of P .

Given these conventions, let us now derive the budget set of a consumer
who may borrow and lend, but has no (physical) investment technology.
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Storage is not an option in order to move consumption from period 2 to period
1. The consumer may, however, forgo some future consumption for current
consumption by purchasing the appropriate borrowing contract. Based on
what we have said above, if he is willing to pay, in period 2, an amount of
(m2−c2) > 0, then in period 1 he can receive at most (m2−c2)/(1+r) units.
Thus one constraint in the budget is m1 ≤ c1 ≤ m1+(m2−c2)/(1+r). On the
other hand, consumption can be postponed in two ways: storage and lending.
If the consumer stores the good his constraint on period 2 consumption is
as derived previously, c2 ≤ m2 + δ(m1 − c1). If he uses the market instead,
his constraint becomes c2 ≤ m2 + (m1 − c1)(1 + r). As long as δ and r
are both strictly positive the second of these is a strictly larger set than
the first. Since consumption is a good (more is better) the consumer will
not use storage, and the effective constraint on future consumption will be
c2 ≤ m2 + (m1 − c1)(1 + r). This is indicated in the right diagram in Figure
3.1, where there are two “budget lines” for increasing future consumption.
The lower of the two is the one corresponding to storage, the higher the one
corresponding to a positive interest rate on loans.

Manipulation of the two constraints shows that they are really identical.
Indeed, the consumer’s budget can be expressed as any of

B = {(c1, c2) | c2 ≤ m2 + (1 + r)(m1 − c1), c1, c2 ≥ 0},

= {(c1, c2) | c1 ≤ m1 +
(m2 − c2)

1 + r
, c1, c2 ≥ 0},

= {(c1, c2) | (m2 − c2) + (1 + r)(m1 − c1) ≥ 0, c1, c2 ≥ 0},

= {(c1, c2) | (m1 − c1) +
(m2 − c2)

1 + r
≥ 0, c1, c2 ≥ 0}.

The first and third of these are expressed in future values, the second
and fourth in present values. It does not matter which you choose as long
as you adopt one perspective and stick to it! (If you recall, we are free to
pick a numeraire commodity. Here this means we can choose a period and
denominate everything in future- or present-value equivalents for this period.
This, by the way, is the one key “trick” in doing inter-temporal economics:
pick one time period as your “base”, convert everything into this time period,
and then stick to it! Finally note that we are interested in the budget line,
generally. Replacing inequalities with equalities in the above you note that
all are just different ways of writing the equation of a straight line through
the endowment point (m1,m2) with a slope of (1 + r).
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Figure 3.1: Storage without and with markets, no (physical) investment

Storage, Investment, Full Markets

What if everything is possible? As above, storage will normally not figure
into the problem, so we will ignore it for a moment. How do (physical)
investment and market investment interact in determining the budget? As
in the case of storage and investment, the first thing to realize is that the
(physical) investment technology will be used to the point where its marginal
(gross rate of) return f ′(·) is equal to that of putting the marginal dollar
into the financial market. That is, the optimal investment is determined by
f ′(x) = (1 + r). The second key point is that with perfect capital markets
it is possible to borrow money to invest. The budget thus is bounded by a
straight line through the point (m1 − x,m2 + f(x)) with slope (1 + r).

3.1.2 Utility maximization

After the budget has been derived the consumer’s problem is solved in the
usual fashion, and all previous equations which characterize equilibrium ap-
ply. Suppose the case of markets in which an interest rate of r is charged.
Then it is necessary that

u1(c)

u2(c)
=

(1 + r)

1
.

What is the interpretation of this equation? Well, on the right hand side we
have the slope of the budget line, which would usually be the price ratio p1/p2.
That is, the RHS gives the cost of future consumption in terms of current
consumption (recall that in terms of units of goods we have (1/p2)/(1/p1).)
On the left hand side we have the ratio of marginal utilities, that is, the
MRS. It tells us the consumer’s willingness to trade off current consumption
for future consumption. This will naturally depend on the consumer’s time
preferences.
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Let us take a concrete example. In macro-economics we often use a so-
called time-separable utility function like u(c1, c2) = lnc1+βlnc2; β < 1.
This specification says that consumption is ranked equally within each period
(the same sub-utility function applies within each period) but that future
utility is not as valuable as today’s and hence is discounted. One of the
key features of such a separable specification is that the marginal utilities of
today’s consumption and tomorrow’s are independent. That is, if I consider
∂u(c1, c2)/∂ci, I find that it is only a function of ci and not of cj. This
feature makes life much easier if the goal is to solve some particular model or
make some predictions. Note that the discount factor β is related to the
consumer’s discount rate ρ: β = 1/(1 + ρ). For this specific function, the
equation characterizing the consumer’s optimum then becomes

c2

βc1

= (1 + r) ⇒ c2

c1

= β(1 + r) ⇒ c2

c1

=
1 + r

1 + ρ
.

Some interesting observations follow from this. First of all, if the private
discount rate is identical to the market interest rate, ρ = r, the consumer
would prefer to engage in perfect consumption smoothing. The ideal
consumption path has the consumer consume the same quantity each period.
If the consumer is more impatient than the market, so that ρ > r, then
the consumer will favour current consumption, while a patient consumer for
whom ρ < r will postpone consumption. This is actually true in general with
additively separable functions, since u′(c1) = u′(c2) iff c1 = c2.

In order to achieve the preferred consumption path the consumer will
have to engage in the market. He will either be a lender (c1 < m1) or a
borrower (c1 > m1.) This, of course, depends on the desired consumption
mix compared to the consumption mix in the consumer’s endowment.

Finally, we can do the usual comparative statics. How will a change
in relative prices affect the consumer’s wellbeing and consumption choices?
The usual facts from revealed preference theory apply: If the interest rate in-
creases (i.e., current consumption becomes more expensive relative to future
consumption) then

• A lender will remain a lender.

• A borrower will borrow less (assuming normal goods) and may switch
to being a lender.

• A lender will become better off.

• A borrower who remains a borrower will become worse off.
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• A borrower who switches to become a lender may be worse or better
off.

These can be easily verified by drawing the appropriate diagram and observ-
ing the restrictions implied by the weak axiom of revealed preference.

We can also see some of these implications by considering the Slutsky
equation for this case. In this case the demand function for period 1 con-
sumption is c1(p1, p2,M), where M = p1m1 +p2m2. It follows from the chain
rule that

dc1(·)
dp1

=
∂c1(·)
∂p1

+
∂c1(·)
∂M

∂M

∂p1

,

but ∂M/∂p1 = m1. The Slutsky equation tells us that

∂c1(·)
∂p1

=
∂h1(·)
∂p1

− c1(·)
∂c1(·)
∂M

and hence we obtain

dc1(·)
dp1

=
∂h1(·)
∂p1

− (c1(·)−m1)
∂c1(·)
∂M

.

This equation is easily remembered since it is really just the Slutsky equation
as usual, where the weighting of the income effect is by market purchases
only. In the standard model without endowment, all good 1 consumption
is purchased, and hence subject to the income effect. With an endowment,
only the amount traded on markets is subject to the income effect.

Now to the analysis of this equation. We know that the substitution
effect is negative. We also know that for a normal good the income effect
is positive. The sign of the whole expression therefore depends on the term
in brackets, in other words on the lender/borrower position of the consumer.
A borrower has a positive bracketed term. Thus the whole expression is
certainly negative and a borrower will consume less if the price of current
consumption goes up. A lender will have a negative bracketed term, which
cancels the negative sign in the expression, and we know that the total effect
is less negative than the substitution effect. In fact, the (positive) income
effect could be larger than the (negative) substitution effect and current
consumption could go up!
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3.2 Real Interest Rates

So far we have used the usual economic notion of prices as exchange rates
of goods. In reality, prices are not denoted in terms of some numeraire
commodity, but in terms of money (which is not a good.) This may lead to
the phenomenon that there is a price ratio of goods to money, and that this
may change over time, an effect called inflation if money prices of goods go
up (and deflation otherwise.) We can modify our model for this case by fixing
the price of the numeraire at only one point in time. We then can account for
inflation/deflation. Doing so will require a differentiation between nominal
and real interest rates, however, because you get paid back the principal and
interest on an investment in units of money which has a different value (in
terms of real goods) compared to the one you started out with. So, let p1 = 1
be the (money) price of the consumption good in period 1 and let p2 be the
(money) price of the consumption good in period 2. Let the nominal interest
rate be r, which means that you will get interest of r units of money per
unit. The budget constraint for the two period problem then becomes:

B :: p2c2 = p2m2 + (1 + r)(m1 − c1).

In other words, the total monetary value of second period consumption can at
most be the monetary value of second period endowment plus the monetary
value of foregone first period consumption.

We can now ask two questions: what is the rate of inflation and what
is the real interest rate.

The rate of inflation is the rate π such that (1 + π)p1 = p2, i.e., π =
(p2−p1)/p1. The real interest rate can now be derived by rewriting the above
budget to have the usual look:

c2 = m2 +
1 + r

p2

(m1 − c1) = m2 +
1 + r

1 + π
(m1 − c1) = m2 + (1 + r̂)(m1 − c1).

Thus, the real interest rate is r̂ = (r − π)/(1 + π), and as a rule of thumb
(for small π) it is common to simply use r̂ ∼ (r−π). Note however that this
exaggerates the real interest rate.

3.3 Risk-free Assets

Another application of this methodology is for a first look at assets. It is
easiest if we first look at financial assets only. A financial asset is really just
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a promise to pay (sometimes called an IOU, from the phrase “I owe you”.)
If we assume that the promise is known to be kept, that the amount it will
pay back is known, and that the value of what it pays back when it does is
known, then we have a risk-free asset. While there are few such things,
a government bond comes fairly close. Note that assets do not have to be
financial instruments: they can also be real, such as a dishwasher, car, or
plant (of either kind, actually.) By calling those things assets we focus on
the fact that they have a future value.

3.3.1 Bonds

A bond is a financial instrument issued by governments or large corporations.
Bonds are, as far as their issuer is concerned, a loan. A bond has a so called
face value, which is what it promises to pay the owner of the bond at the
maturity date T of the the bond. A normal bond also has a a sequence
of coupons, which used to be literally coupons that were attached to the
bond and could be cut off and exchanged for money at indicated dates. If
we denote by F the face value of the bond, and by C the value of each
coupon, we can now compute the coupon rate of the bond. For simplicity,
assume a yearly coupon for now (we will see more financial math later which
allows conversion of compounding rates into simple rates). In that case the
coupon rate is simply C

F
100%. A strip bond is a bond which had all

its coupons removed (“stripped”). The coupons themselves then generate a
simple annuity — a fixed yearly payment for a specified number of years
— which could be sold separately. Another special kind of bond is a consol,
which is a bond which pays its coupon rate forever, but never pays back any
face value.

We can now ask what the price of such a bond should be today. Since the
bond bestows on its owner the right to receive specified payments on specified
future dates, its value is the current value of all these future payments. Future
payments are, of course, converted into their present values by using the
appropriate interest rate:

PV =
1

(1 + r)
C +

1

(1 + r)2
C + . . . +

1

(1 + r)T
C +

1

(1 + r)T
F.

Denote the coupon rate by c. Then we can simplify the above equation to
yield

PV = F

(

1

(1 + r)T
+ c

T
∑

i=1

1

(1 + r)i

)

.
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From this equation follows one of the more important facts concerning the
price of bonds and the interest rate. Recall that once a bond is issued T ,
F , and C are fixed. That means that the present price of the bond needs
to adjust as the interest rate r varies. Since r appears in the denominator,
as the interest rate rises the present value of a bond falls. Bond prices and
interest rates are inversely related. Is the present price of a bond higher
or lower than the maturity value? In the latter case the bond is trading at a
discount, in the former at a premium. This will depend on the relationship
between the interest rate and the coupon rate. Intuitively, if the coupon rate
exceeds the interest rate the bond is more valuable, and thus its price will
be higher.

3.3.2 More on Rates of Return

You may happen to own an asset which, as mentioned previously, is the right
to a certain stream of income or benefits (services). This asset happens to
also have a current market price (we will see later where that might come
from and what conditions it will have to satisfy.) The question you now have
is, what is this asset’s rate of return?

Let us start with the simple most case of no income/services, but an asset
that only has a current and a future price, p0 and p1, respectively. Your rate of
return then is the money you gain (or loose) as a percentage of the cost of the

asset, in other words the per dollar rate of return is
p1 − p0

p0

. We can now

ask what conditions such a rate of return might have to satisfy in equilibrium.
Assume, therefore, a case where there is complete certainty over all assets’
returns, i.e., future prices. All consumers would want to buy that asset which
has the highest rate of return, since that would move their individual budget
line out the most. In equilibrium, if a consumer is willing to hold more than
one asset, then it must be true that both assets have the same rate of return.

Call this rate r. Then we know that r =
p1 − p0

p0

=
p1

p0

− 1, or (1 + r) =
p1

p0

.

This condition must hold for all assets which are held, otherwise there would
be arbitrage opportunities. It is therefore also known as a zero arbitrage
condition. Recall that arbitrage refers to the activity of selling high while
buying low in order to make a profit. For example, assume that there were
an asset for which p1/p0 > 1 + r. Then what I should do is to borrow money
at the interest rate r, say I dollars, and use those funds to buy the good in
question, i.e., purchase I/p0 units. Then wait and sell the goods in the next
period. That will yield Ip1/p0 dollars. I also have to pay back my loan, at
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(1 + r)I dollars, and thus I have a profit of p1/p0− (1 + r) per dollar of loan.
Note that the optimal loan size would be infinite. However, the resulting large
demand would certainly drive up current prices (while also lowering future
prices, since everybody expects a flood of the stuff tomorrow), and this serves
to reduce the profitability of the exercise. In a zero-arbitrage equilibrium we

therefore must have (1 + r) = p1/p0, or, more tellingly, p0 =
p1

1 + r
. The

correct market price for an asset is its discounted future value!

This discussion has an application to the debate about pricing during
supply or demand shocks. For example, gasoline prices during the Gulf war,
or the alleged price-gouging in the ice-storm areas of Quebec and Ontario:
What should the price of an item be which is already in stock? Many people
argue that it is unfair to charge a higher price for in-stock items. Only the
replacement items, procured at higher cost, should be sold at the higher cost.
While this may be “ethical” according to some, it is easily demonstrated to
violate the above rule: The price of the good tomorrow will be determined by
demand and supply tomorrow, and apparently all are agreed that that price
might well be higher due to a large shift out in the demand and/or reduction
in supply. Currently I own that good, and have therefore the choice of selling
it tomorrow or selling it today. I would want to obtain the appropriate rate
of return on the asset, which has to be equal between the two options. Thus
I am only willing to part with it now if I am offered a higher price which
foreshadows tomorrows higher price. Should I be forced not to do so I am
forced to give money away against my will and better judgment. This would
normally be considered unethical by most (just try and force them to give
you money.)

Of course, assets are not usually all the same, and we will see this later
when we introduce uncertainty. For example, a house worth $100,000 and
$100,000 cash are not equivalent, since the cash is immediately usable, while
the house may take a while to sell — it is less “liquid.” The same is true
for thinly traded stocks. Such assets may carry a liquidity premium —
an illiquidity punishment, really — and will have a higher rate of return in
order to compensate for the potential costs and problems in unloading them.
This can, of course, be treated in terms of risk, since the realization of the
house’s value is a random variable, at least in time, if not in the amount. Of
course, there are other kinds of risk as well, and in general the future price of
the asset is not known. (Note that bonds are an exception to some degree.
If you choose to hold the bond all the way to the maturity date you do know
the precise stream of payments. If you sell early, you face the uncertain sale
price which depends on the interest rate at that point in time.)
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Assets may also yield consumption returns while you hold them: a car or
house are examples, as are dividend payments of stocks or interest payments
of bonds. For one period this is still simple to deal with: The asset will
generate benefit (say rent saved, or train tickets saved) of b and we thus

compute the rate of return as
p1 − p0 + b

p0

. If the consumer holds multiple

assets in equilibrium, then we again require that this be equal to the rate
of return on other assets. Complicating things in the real world is the fact
that assets often differ in their tax treatment. For example, if the house is a
principal residence any capital gains (the tax man’s term for p1 − p0, and to
add insult to injury they ignore inflation) are tax free. For another asset, say
a painting, this is not true. Equilibrium requires, of course, that the rates
of return as perceived by the consumer are equalized, and thus we may have
to use an after tax rate for one asset and set it equal to an untaxed rate for
another.

3.3.3 Resource Depletion

The simple discounting rules above can also be applied to gain some first
insights into resource economics. We can analyse the question of simple
resource depletion: at what rate should we use up a non-renewable resource.
We can also analyse when a tree (or forest) should to be cut down.

Assume a non-renewable resource currently available at quantity S. For
simplicity, first assume a fixed annual demand D. It follows that there are
S/D years left, after which we assume that an alternative has to be used
which costs C. Thus the price in the last year should be pS/D = C. Arbi-
trage implies that pt+1 = (1 + r)pt, so that p0 = C/(1 + r)S/D. Note that
additional discoveries of supplies lower the price since they increase the time
to depletion, as do reductions in demand. Lowering the price of the alter-
native also lowers the current price. Finally, increases in the discount rate
lower the price.

This approach has a major flaw, however. It assumes demand and supply
to be independent of price. So instead, let us assume some current price p0

as a starting value and let us focus on supply. When will the owner of the
resource be willing to sell? If the market rate of return on other assets is r
then the resource, which is just another asset, will also have to generate that
rate of return. Therefore p1 = (1 + r)p0, and in general we’d have to expect
pt = (1 + r)tp0. Note that the price of the resource is therefore increasing
with time, which, in general equilibrium, means two things: demand will
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fall as customers switch to alternatives, and substitutes will become more
competitive. Furthermore we might expect more substitutes to be developed.
We will ultimately run out of the resource, but it is nearly always wrong to
simply use a linear projection of current use patterns. This fact has been
established over and over with various natural resources such as oil, tin,
copper, titanium, etc.

What about renewable resources? Consider first the ‘European’ model
of privately owned land for timber production as an example. Here we have
a company who owns an asset — a forest — which it intends to manage
in order to maximize the present value of current and future profits. When
should it harvest the trees? Each year there is the decision to harvest the
tree or not. If it is cut it generates revenue right away. If it continues to grow
it will not generate this revenue but instead generate more revenue tomorrow
(since it is growing and there will be more timber tomorrow.) It follows that
the two rates of return should be equalized, that is, the tree should be cut
once its growth rate divided by its current size has slowed to the market
interest rate. This fact has a few implications for forestry: Faster growing
trees are a better investment, and thus we see mostly fast growing species
replanted, instead of, say, oaks, which grow only slowly. (This discussion is
ceteris paribus — ignoring general equilibrium effects.) Furthermore, what
if you don’t own the trees? What if you are the James Bond of forestry, with
a (time-limited) license to kill? In that case you will simply cut the trees
down either immediately or before the end of your license, depending on the
growth rate. Of course, in Canada most licenses are for mature forests, which
nearly by definition have slow or no growth — thus the thing to do is to clear
cut and get out of there. The Europeans, critical of clear-cutting, forget that
they have long ago cut nearly all of their mature forests and are now in a
harvesting model with mostly high growth forests.

As a final note, notice that lack of ownership will also impact the re-
planting decision. As we will see later in the course, if we treat the logger as
an agent of the state, the state has serious incentive problems to overcome
within this principal agent framework.

3.3.4 A Short Digression into Financial Economics

I thought it might be useful to provide you with a short refresher or intro-
duction to multi-period present value and compound interest computations.
For starters, assume you put $1 in the bank at 5% interest, computed yearly,
and that all interest income is also reinvested at this 5% rate. How much
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money will you have in each of the following years? The answer is

1.05, 1.052, 1.053, . . . 1.05t.

The important fact about this is that a simple interest rate and a compounded
interest rate are not the same, since with compounding there is interest on
interest. For example, if you get a loan at 12%, it matters how often this is
compounded. Let us assume it is just simple interest; You then owe $1.12
for every dollar you borrowed at the end of one year. What you will quickly
find out is that banks don’t normally do that. They at least compound semi-
annually, and normally monthly. Monthly compounding would mean that
you will owe (1 + .12

12
)12 = 1.1268. On a million dollar loan this would be

a difference of $6825.03. In other words, you are really paying not a 12%
interest rate but a 12.6825% simple interest rate. It is therefore very impor-
tant to be sure to know what interest rate applies and how compounding is
applied (semi-annual, monthly, etc.?)

Here is a handy little device used in many circles: the rule of 72,
sometimes also referred to as the rule of 69. It is used to find out how long
it will take to double your money at any given interest rate. The idea is that
it will approximately take 72/r periods to double your money at an interest
rate of r percent. The proof is simple: we want to solve for the t for which

(

1 +
r%

100

)t

= 2 ⇒ tln

(

1 +
r%

100

)

= ln2.

However, for small x we know that ln(1 + x) ∼ x, thus

t
r%

100
∼ ln2⇒ t ∼ 100ln2

r%
=

69.3147

r%

but of course 72 has more divisors and is much easier to work with.

The power of compounding also comes into play with mortgages or
other installment loans. A mortgage is a promise to pay every period for
a specified length (typically 25 years, i.e., 300 months) a certain payment
p. This is also known as a simple annuity. What is the value of such a
promise, i.e., its present value? We need to compute the value of the following
sum:

δp + δ2p + δ3p + . . . + δnp.

Here δ = 1/(1 + r), where r is the interest rate we use per period. Thus

PV = δ
(

p + δp + δ2p + . . . + δn−1p
)

= δp
(

1 + δ + δ2 + . . . + δn−1
)
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= δp
1− δn

1− δ

PV =
1− (1 + r)−n

r
p

(Recall in the above derivation that for δ < 1 we have
∑∞

i=1 δi = 1/(1− δ).)

The above equation relates four variables: the principal amount, the
payment amount, the payment periods, and the interest rate. If you fix any
three this allows you to derive the fourth after only a little bit of manip-
ulation. A final note: In Canada a mortgage can be at most compounded
semi-annually. Thus the effective interest rate per month is derived by solv-
ing (1+r/2)2 = (1+rm)12. If you are quoted a 12% interest rate per year the
monthly rate is therefore (1.06)1/6 − 1 = 0.975879418%. The effective yearly
interest rate in turn is (1.06)2 − 1 = 12.36%, and by law the bank is sup-
posed to tell you about that too. Given the above, and the fact that nearly
all mortgages are computed for a 25 year term (but seldom run longer than 5
years, these days), the monthly payment at a 10% yearly interest rate for an
additional $1000 on the mortgage is $8.95. Before you engage in mortgages
it would be a good idea to program your spreadsheet with these formulas
and convince yourself how bi-weekly payments reduce the total interest you
pay, how important a couple of percentage points off the interest rate are to
your monthly budget, etc.

3.4 Review Problems

Question 1: There are three time periods and one consumption good. The
consumer’s endowments are 4 units in the first period, 20 units in the second,
and 1 unit in the third. The money price for the consumption good is known
to be p = 1 in all periods (no inflation.) Let rij denote the (simple, nominal)
interest rate from period i to j.

a) State the restrictions on r12, r23 and r13 implied by zero arbitrage.
b) Write down the consumer’s budget constraint assuming the restric-

tion in (a) holds. Explain why it is useful to have this condition hold (i.e.,
point out what would cause a potential problem in how you’ve written the
budget if the condition in (a) fails.

c) Draw a diagrammatic representation of the budget constraint in pe-
riods 2 and 3, being careful to note how period 1 consumption influences this
diagram.

Question 2: There are two goods, consumption today and tomorrow. Joe
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has an initial endowment of (100, 100). There exists a credit market which
allows him to borrow or lend against his initial endowment at market interest
rates of 0%. A borrowing constraint exists which prevents him from borrow-
ing against more than 60% of his period 2 endowment. Joe also possesses
an investment technology which is characterized by a production function
x2 = 10

√
x1. That is, an investment of x1 units in period 1 will lead to x2

units in period 2.
a) What is Joe’s budget constraint? A very clearly drawn and well la-

belled diagram suffices, or you can give it mathematically. Also give a short
explanatory paragraph how the set is derived.

b) Suppose that Joe’s preferences can be represented by the function
U(c1, c2) = exp(c4

1c
6
2). (Here exp() denotes the exponential function.) What

is Joe’s final consumption bundle, how much does he invest, and what are
his transactions in the credit market.

Question 3: Anna has preferences over her consumption levels in two peri-
ods which can be represented by the utility function

u(c1, c2) = min

{

23

22

(

12

10
c1 + c2

)

,
13

10
c1 + c2

}

.

a) Draw a carefully labelled representation of her indifference curve
map.

b) What is her utility maximizing consumption bundle if her initial en-
dowment is (9, 8) and the interest rate is 25%.

c) What is her utility maximizing consumption bundle if her initial en-
dowment is (5, 12) and the interest rate is 25%.

d) Assume she can lend money at 22% and borrow at 28%. What would
her endowment have to be for her to be a lender, a borrower?

e) Assume she can lend money at 18% and borrow at 32%. Would Anna
ever trade at all? (Explain.)

Question 4: Alice has preferences over consumption in two periods repre-
sented by the utility function uA(c1, c2) = lnc1 + αlnc2, and an endowment
of (12, 6). Bob has preferences over consumption in two periods represented
by the utility function uB(c1, c2) = c1 + βc2, and an endowment of (8, 4).

a) Draw an appropriately labelled representation of this exchange econ-
omy in order to “prime” your intuition. (Indicate the indifference maps and
the Contract Curve.)

b) Assuming, of course, that both α and β lie strictly between zero and
one, what is the equilibrium interest rate and allocation?
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Chapter 4

Uncertainty

So far, it has been assumed that consumers would know precisely what they
were buying and getting. In real life, however, it is often the case that
an action does not lead to a definite outcome, but instead to one of many
possible outcomes. Which of these occurs is outside the control of the decision
maker. It is determined by what is referred to as “nature.” These situations
are ones of uncertainty — it is uncertain what happens. Often, however,
the probabilities of the different possibilities are known from past experience,
or can be estimated in some other way, or indeed are assumed based on some
personal (subjective) judgment. Economists then speak of risk.

Note that our “normal” model is already handling such cases if we take it
at its most general level: commodities in the model were supposed to be fully
specified, and could, in principle, be state contingent. We will develop that
interpretation further later on in this chapter. First, however, we will develop
a more simple model which is designed to bring the role of probabilities to
the fore.

One of the key facts about situations involving risk/uncertainty is that
the consumer’s wellbeing does not only depend on the various possible out-
comes, and which occurs in the end, but also on how likely each outcome
is. The standard model of chapter 2 does not allow an explicit role for
such probabilities. They are somehow embedded in the utility function and
prices. In order to compare situations which differ only in the probabilities,
for example, it would be nice to have probabilities explicitly in the model
formulation. A particularly simple model that does this holds the outcomes
fixed, they will all be assumed to lie in some set of alternatives X, and fo-
cuses on the different probabilities with which they occur. We call such a list

57
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of the probabilities for each outcome a lottery.

Definition 1 A simple lottery is a list L = (p1, p2, . . . , pN) of probabilities
for the N different outcomes in X, with pi ≥ 0,

∑N
i=1 pi = 1.

If we have a suitably defined continuous space of outcomes, for example
<+ for the outcome “wealth”, we can view a probability distribution as a
lottery. We will therefore, if it is convenient, use the cumulative distribution
function (cdf) F (·) or the probability density function (assuming it exists)
f(x) to denote lotteries over (one-dimensional) continuous outcome spaces.1

Of course, lotteries could have as outcomes other lotteries, and such
lotteries are called compound lotteries. However, any such compound
lottery will lead to a probability distribution over final outcomes which is
equivalent to that of some simple lottery. In particular, if some compound
lottery leads with probability αi to some simple lottery i, and if that simple
lottery i in turn assigns probability pi

n to outcome n, then we have the total
probability of outcome n given by pn =

∑

i αip
i
n.

Assumption 1 Only the probability distribution over “final” outcomes mat-
ters to the consumer =⇒ preferences are over simple lotteries only.

Note that this is a restrictive assumption. For example, it does not
allow the consumer to attach any direct value to the fact that he is involved
in a lottery, i.e., gambling pleasure (or dislike) in itself is not allowed under
this specification. The consumer is also assumed not to care how a given
probability distribution over final outcomes arises, only what it is. This
is clearly an abstraction which looses quite a bit of richness in consumer
behaviour. On the positive side stands the mathematical simplicity of this
setting. Probability distributions over some set are a fairly simple framework
to work with.

We now have assumed that a consumer cares only about the probability
distribution over a finite set of outcomes. Just as before, we will assume that
the consumer is able to rank any two such distributions, in the usual way.

1Recall that a cumulative distribution function F (·) is always defined and that F (x)
represents the probability of the underlying random variable taking on a value less or equal
to x. If the density exists (and it does not have to!) then we denote it as f(x) and have
the identity F (x) =

∫ x
f(t)dt. We can then denote the mean, say, in two different ways:

µ =
∫

tf(t)dt =
∫

tdF (t), depending on if we know that the pdf exists, or want to allow
that it does not.
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Assumption 2 The preferences over simple lotteries are rational and con-
tinuous.

This latter assumption guarantees us the existence of a utility function
representing these preferences. Note that rationality is a strong assumption
in this case. In particular, rationality requires transitivity of the preferences,
that is, L º L′, L′ º L̂ ⇒ L º L̂. For different lotteries this may be
hard to believe, and there is some evidence that real life consumers violate
this assumption. These violations of transitivity are “more common” in
this setting compared to the model without risk/uncertainty. Yet, without
rationality the model would have no predictive power. We further assume
that the preferences satisfy the following assumption:

Assumption 3 Preferences are Independent of what other outcomes may
have been available: L º L′ ⇒ αL + (1− α)L̂ º αL′ + (1− α)L̂.

This seems sensible on the one hand, since outcomes are mutually ex-
clusive — one and only one of the outcomes will happen in the end — but
is restrictive since consumers often express regret: having won $5000, the
evaluation of that win often depends on the fact if this was the top price
available or the consolation price, for example. The economic importance of
this assumption is that we have only one utility index over outcomes in which
preferences over lotteries (the distribution over available outcomes) does not
enter. Once we have done this, there is only one more assumption:

Assumption 4 The utility of a lottery is the expected value of the utilities
of its outcomes:

U(L) =
n
∑

i=1

piu(xi)

(

U(L) =

∫

u(x)dF (x)

)

This form of a utility function is called a von Neumann-Morgenstern,
or vN-M, utility function. Note that this name applies to U(·), not u(·).
The latter is sometimes called a Bernoulli utility function. The vN-M utility
function is unique only up to a positive affine transformation, that is, the
same preferences over lotteries are expressed by V (·) and U(·) if and only
if V (·) = aU(·) + b, a > 0. We are allowed to scale the utility index and
to change its slope, but we are not allowed to change its curvature. The
reason for this should be clear. Suppose we compare two lotteries, L and L̂,
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which differ only in that probability is shifted between outcomes k and j and
outcomes m and n. Suppose U(L) > U(L̂), so:

U(L) =
n
∑

i=1

piu(xi) > U(L̂) =
n
∑

i=1

p̂iu(xi)

n
∑

i=1

piu(xi)−
n
∑

i=1

p̂iu(xi) > 0

(pk − p̂k)u(xk) + (pj − p̂j)u(xj)(pm − p̂m)u(xm) + (pn − p̂n)u(xn) > 0

(pk − p̂k)(u(xk)− u(xj)) + (pm − p̂m)(u(xm)− u(xn)) > 0

This comparison clearly depends on both, the differences in probabilities as
well as the differences in the utility indices of the outcomes. If we multiply
u(·) by a constant, it will factor out of the last line above. If, however, we
were to transform the function u(·), even by a monotonic transformation,
we would change the difference between outcome utilities, and this could
change the above comparison. In fact, as we shall see later, the curvature
of the Bernoulli utility index u(·) is crucial in determining the consumer’s
behaviour with respect to risk, and will be used to measure the consumer’s
risk aversion.

Before we proceed to that, some famous paradoxes relating to uncer-
tainty and our assumptions.

Allais Paradox: The Allais paradox shows that consumers may not satisfy
the axioms we had assumed. It considers the following case: Consider a
space of outcomes for a lottery given by C = (25, 5, 0) in hundred thousands
of dollars. Subjects are then asked which of two lotteries they would prefer,

LA = (0, 1, 0) or LB = (.1, .89, .01).

Often consumers will indicate a preference for LA, probably because they
foresee that they would regret to have been greedy if they end up with nothing
under lottery B. On the other hand, if they are asked to choose between

LC = (0, .11, .89) or LD = (.1, 0, .9)

the same consumers often indicate a preference for lottery D. Note that there
is little regret possible here, you simply get a lot larger winning in exchange
for a slightly lower probability of winning under D. These choices, however,
violate our assumptions. This is easily checked by assuming the existence of
some u(·): The preference for A over B then indicates that

u(5) > .1u(25) + .89u(5) + .01u(0)

.11u(5) > .1u(25) + .01u(0)

.11u(5) + .89u(0) > .1u(25) + .9u(0)
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and the last line indicates that lottery C is preferred to D!

Ellsberg Paradox: This paradox shows that consumers may not be con-
sistent in their assessment of uncertainty. Consider an urn with 300 balls in
it, of which precisely 100 are known to be red. The other 200 are blue or
green in an unknown proportion (note that this is uncertainty: there is no
information as to the proportion available.) The consumer is again offered
the choice between two pairs of gambles:

Choice 1 =

{

LA : $1000 if a drawn ball is red.
LB : $1000 if a drawn ball is blue.

Choice 2 : =

{

LC : $1000 if a drawn ball is NOT red.
LD : $1000 if a drawn ball is NOT blue.

Often consumers faced with these two choices will choose A over B and will
choose C over D. However, letting u(0) be zero for simplicity, this means that
p(R)u(1000) > p(B)u(1000) ⇒ p(R) > p(B) ⇒ (1 − p(R)) < (1 − p(B)) ⇒
p(¬R) < p(¬B) ⇒ p(¬R)u(1000) < p(¬B)u(1000). Thus the consumer
should prefer D to C if choice were consistent.

Other problems with expected utility also exist. One is the intimate
relation of risk aversion and time preference which is imposed by these pref-
erences. There consequently is a fairly active literature which attempts to
find a superior model for choice under uncertainty. These attempts mostly
come at the expense of much higher mathematical requirements, and many
still only address one or the other specific problem, so that they too are easily
‘refuted’ by a properly chosen experiment.

4.1 Risk Aversion

We will now restrict the outcome space X to be one-dimensional. In particu-
lar, assume that X is simply the wealth/total consumption of the consumer
in each outcome. With this simplification, the basic attitudes of a consumer
concerning risk can be obtained by comparing two different lotteries: one
that gives an outcome for certain (a degenerate lottery), and another that
has the same expected value, but is non-degenerate. So, let L be a lottery
on [0, X̄] given by the probability density f(x). It generates an expected

value of wealth of
∫ X̄

0
xf(x)dx = C. We can now compare the consumer’s

utility from obtaining C for certain, and that from the lottery L (which has
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expected wealth C.) Compare

U(L) =

∫ X̄

0

u(x)f(x)dx to u

(

∫ X̄

0

xf(x)dx

)

.

Definition 2 A risk-averse consumer is one for whom the expected utility
of any lottery is lower than the utility of the expected value of that lottery:

∫ X̄

0

u(x)f(x)dx < u

(

∫ X̄

0

xf(x)dx

)

.
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Figure 4.1: Risk Aversion

The astute reader may notice that this is Jensen’s inequality, which is
one way to define a concave function, in this case u(·) (see Fig. 4.1.) This
is also the reason why only affine transformations were allowed for expected
utility functions. Any other transformation would affect the curvature of the
Bernoulli utility function u(·), and thus would change the risk-aversion of
the consumer. Clearly, consumers with different risk aversion do not have
the same preferences, however.2 Note that a concave u(·) has a diminishing
marginal utility of wealth, an assumption which is quite familiar from intro-
ductory courses. Risk aversion therefore implies (and is implied by) the fact

2To belabour the point, consider preferences over wealth represented by u(w) = w.
In the standard framework of chapter 1 positive monotonic transformations are ok, so
that the functions w2 and

√
w both represent identical preferences. It is easy to verify

that these two functions lead to a quite different relationship between the expected utility
and the utility of the expected wealth than the initial one, however. Thus they cannot
represent the same preferences in a setting of uncertainty/risk.
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Figure 4.2: Risk Neutral and Risk Loving

that additional units of wealth provide additional utility, but at a decreasing
rate. Of course, consumers do not have to be risk-averse.

Risk neutral and risk loving are defined in the obvious way: The first
requires that

∫

u(x)f(x)dx = u

(
∫

xf(x)dx

)

.

while the second requires

∫

u(x)f(x)dx > u

(
∫

xf(x)dx

)

.

There is a nice diagrammatic representation of these available if we
consider only two possible outcomes (Fig. 4.2).

There are two other ways in which we might define risk aversion, and
both reveal interesting facts about the consumer’s economic behaviour. The
first is by using the concept of a certainty equivalent. It is the answer
to the question “how much wealth, received for certain, is equivalent (in the
consumer’s eyes, according to preferences) to a given gamble/lottery?” In
other words:

Definition 3 The certainty equivalent C(f, u) for a lottery with proba-
bility distribution f(·) under the (Bernoulli) utility function u(·) is defined
by the equation

u (C(f, u)) =

∫

u(x)f(x)dx.

Again a diagram for the two-outcome case might help (Fig. 4.3).
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Figure 4.3: The certainty equivalent to a gamble

A risk averse consumer is one for whom the certainty equivalent of
any gamble is less than the expected value of that gamble. One useful
economic interpretation of this fact is that the consumer is willing to pay
(give up expected wealth) in order to avoid having to face the gamble. In-
deed, the maximum amount which the consumer would pay is the difference
∫

wf(w)dw − C(f, u). This observation basically underlies the whole insur-
ance industry: risk-averse consumers are willing to pay in order to avoid risk.
A well diversified insurance company will be risk neutral, however, and there-
fore is willing to provide insurance (assume the risk) as long as it guarantees
the consumer not more than the expected value of the gamble: Thus there
is room to trade, and insurance will be offered. (More on that later.)

Another way to look at risk aversion is to ask the following question: If
I were to offer a gamble to the consumer which would lead either to a win of
ε or a loss of ε, how much more than fair odds do I have to offer so that the
consumer will take the bet? Note that a fair gamble would have an expected
value of zero (i.e., 50/50 odds), and thus would be rejected by the (risk
averse) consumer for sure. This idea leads to the concept of a probability
premium.

Definition 4 The probability premium π(u, ε, w) is defined by

u(w) = (0.5 + π(·)) u(w + ε) + (0.5− π(·)) u(w − ε).

A risk-averse consumer has a positive probability premium, indicating that
the consumer requires more than fair odds in order to accept a gamble.
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It can be shown that all three concepts are equivalent, that is, a con-
sumer with preferences that have a positive probability premium will be one
for whom the certainty equivalent is less than the expected value of wealth
and for whom the expected utility is less than the utility of the expectation.
This is reassuring, since the certainty equivalent basically considers a con-
sumer with a property right to a gamble, and asks what it would take for him
to trade to a certain wealth level, while the probability premium considers
a consumer with a property right to a fixed wealth, and asks what it would
take for a gamble to be accepted.

4.1.1 Comparing degrees of risk aversion

One question we can now try to address is to see which consumer is more risk
averse. Since risk aversion apparently had to do with the concavity of the
(Bernoulli) utility function it would appear logical to attempt to measure its
concavity. This is indeed what Arrow and Pratt have done. However, simply
using the second derivative of u(·), which after all measures curvature, will
not be such a good idea. The reason is that the second derivative will depend
on the units in which wealth and utility are measured.3 Arrow and Pratt
have proposed two measures which largely avoid this problem:

Definition 5 The Arrow-Pratt measure of (absolute) risk aversion
is

rA = −u′′(w)

u′(w)
.

The Arrow-Pratt measure of relative risk aversion is

rR = −u′′(w)w

u′(w)
.

Note that the first of these in effect measures risk aversion with respect
to a fixed amount of gamble (say, $1). The latter, in contrast, measures risk
aversion for a gamble over a fixed percentage of wealth. These points can be
demonstrated as follows:

Consider a consumer with initial wealth w who is faced with a small
fair bet, i.e., a gain or loss of some small amount ε with equal probability.

3You can easily verify this by thinking of the units attached to the second derivative.
If the first derivative measures change in utility for change in wealth, then its units must
be u/w, while the second derivative is like a rate of acceleration. Its units are u/w2.
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How much would the consumer be willing to pay in order to avoid this bet?
Denoting this payment by I we need to consider (note that w − I is the
certainty equivalent)

0.5u(w + ε) + 0.5u(w − ε) = u(w − I).

Use a Taylor series expansion in order to approximate both sides:

0.5(u(w) + εu′(w) + 0.5ε2u′′(w)) + 0.5(u(w)− εu′(w) + 0.5ε2u′′(w))

∼ u(w)− Iu′(w) .

Collecting terms and simplifying gives us

0.5ε2u′′(w)) ∼ −Iu′(w) ⇒ I ∼ ε2

2
× −u′′(w)

u′(w)
.

Thus the required payment is proportional to the absolute coefficient of risk
aversion (and the dollar amount of the gamble.)

On the other hand,

u′′w

u′
=

du′

dw

w

u′
=

du′/u′

dw/w
∼ %∆u′

%∆w
.

Thus the relative coefficient of risk-aversion is nothing but the elasticity of
marginal utility with respect to wealth. That is, it measures the responsive-
ness of the marginal utility to wealth changes.

Comparing across consumers, a consumer is said to be more risk averse
than another if (either) Arrow-Pratt coefficient of risk aversion is larger. This
is equivalent to saying that he has a lower certainty equivalent for any given
gamble, or requires a higher probability premium.

We can also compare the risk aversion of a given consumer for different
wealth levels. That is, we can compute these measures for the same u(·)
but different initial wealth. After all, rA is a function of w. It is commonly
assumed that consumers have (absolute) risk aversion which is decreasing
with wealth. Sometimes the stronger assumption of decreasing relative risk
aversion is made, however. Note that a constant absolute risk aversion implies
increasing relative risk aversion. Finally, note also that the only functional
form for u(·) which has constant absolute risk aversion is u(w) = −e(−aw).

You may wish to verify that a consumer exhibiting decreasing absolute
risk aversion will have a decreasing difference between initial wealth and the
certainty equivalent (a declining maximum price paid for insurance) on the
one hand, and a decreasing probability premium on the other.
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Figure 4.4: Comparing two gambles with equal expected value

4.2 Comparing gambles with respect to risk

Another type of comparison of interest is not across consumers or wealth
levels, as above, but across different gambles. Faced with two gambles, when
do we want to say that one is riskier than the other? We could try to
approach this question with purely statistical measures, such as comparisons
of the various moments of the two lotteries’ distributions. This has the major
problem, however, that the consumer may in general be expected to be willing
to trade off a higher expected return for higher variance, say. Because of
this, a definition based directly on consumer preferences is preferable. Two
such measures are commonly employed in economics, first and second order
stochastic dominance.

Let us first focus on lotteries with the same expected value. For example,
consider the two gambles depicted in Fig. 4.4. The first is a gamble over w1

and w2. The second is a gamble over w3 and w4. Both have an identical
expected value of E(w). Nevertheless a risk averse consumer clearly will
prefer the second to the first, as inspection of the diagram verifies.

Note that in Fig. 4.4 E(w) − w1 > E(w) − w3 and w2 − E(w) > w4 −
E(w). This clearly indicates that the second lottery has a lower variance,
and thus that a risk averse consumer prefers to have less variability for a
given mean. With multiple possible outcomes the question is not so simple
anymore, however. One could construct an example with two lotteries that
have the same mean and variance, but which differ in higher moments. What
are the “obvious” preferences of a risk averse consumer about skurtosis, say?
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This has lead to a more general definition for comparing distributions
which have the same mean:

Definition 6 Let F (x) and G(x) be two cumulative distribution functions
for a one-dimensional random variable (wealth). Let F (·) have the same
mean as G(·). F (·) is said to dominate G(·) according to second order
stochastic dominance if for every non-decreasing concave u(x):

∫

u(x)dF (x) ≥
∫

u(x)dG(x)

In words, a distribution second order stochastically dominates another
if they have the same mean and if the first is preferred by all risk-averse
consumers.

This definition has economic appeal in its simplicity, but is one of those
definitions that are problematic to work with due to the condition that for
all possible concave functions something is true. In order to apply this
definition easily we need to find other tests.

Lemma 1 Let F (x) and G(x) be two cumulative distribution functions for
a one-dimensional random variable (wealth). F (·) dominates G(·) according
to second order stochastic dominance if

∫

tg(t)dt =

∫

tf(t)dt, and

∫ x

0

G(t)dt ≥
∫ x

0

F (t)dt, ∀x.

I.e., if they have the same mean and there is more area under the cdf G(·)
than under the cdf F (·) at any point of the distribution.4

A concept related to second order stochastic dominance is that of a mean
preserving spread. Indeed it can be shown that the two are equivalent.

Definition 7 Let F (x) and G(x) be two cumulative distribution functions
for a one-dimensional random variable (wealth). G(·) is a mean preserving
spread compared to F (·) if x is distributed according to F (·) and G(·) is the
distribution of the random variable x + z, where z is distributed according to
some H(·) with

∫

zdH(z) = 0.

4Note that the condition of identical means also implies a restriction on the total

areas below the cumulative distributions. After all,
∫ x

x
tdF (t) = [tF (t)]xx −

∫ x

x
F (t)dt =

x−
∫ x

x
F (t)dt.
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The above gives us an easy way to construct a second order stochastically
dominated distribution: Simply add a zero mean random variable to the given
one.

While it is nice to be able to rank distributions in this manner, the
condition of equal means is restrictive. Furthermore, it does not allow us to
address the economically interesting question of what the trade off between
mean and risk may be. The following concept is frequently employed in
economics to deal with such situations.

Definition 8 Let F (x) and G(x) be two cumulative distribution functions
for a one-dimensional random variable (wealth). F (·) is said to dominate
G(·) according to first order stochastic dominance if for every non-
decreasing u(x):

∫

u(x)dF (x) ≥
∫

u(x)dG(x)

This is equivalent to the requirement that F (x) ≤ G(x),∀x.

Note that this requires that any consumer, risk averse or not, would
prefer F to G. It is often useful to realize two facts: One, a first order
stochastically dominating distribution F can be obtained form a distribution
G by shifting up outcomes randomly. Two, first order stochastic dominance
implies a higher mean, but is stronger than just a requirement on the mean.
The other moments of the distribution get involved too. In other words,
just because the mean is higher for one distribution than another does not
mean that the first dominates the second according to first order stochastic
dominance!

4.3 A first look at Insurance

Let us use the above model to investigate a simple model of insurance. To be
concrete, assume an individual with current wealth of $100,000 who faces a
25% probability to loose his $20,000 car through theft. Assume the individual
has vN-M expected utility. The individual’s expected utility then is

U(·) = 0.75u(100, 000) + .25u(80, 000).

Now assume that the individual has access to an insurance plan. Insurance
works as follows: The individual decides on an amount of coverage, C. This
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coverage carries a premium of π per dollar. The contract specifies that the
amount C will be paid out if the car has been stolen. (Assume that this
is all verifiable.) How would our individual choose the amount of coverage?
Simple: maximize expected utility. Thus

maxC{0.75u(100, 000− πC) + 0.25u(80, 000− πC + C)}.
The first order condition for this problem is

(−π)0.75u′(100, 000− πC) + (1− π)0.25u′(80, 000− πC + C) = 0.

Before we further investigate this equation let us verify the second order
condition. It requires

(−π)20.75u′′(100, 000− πC) + (1− π)20.25u′′(80, 000− πC + C) < 0.

Clearly this is only satisfied if u(·) is concave, in other words, if the consumer
is risk averse.

So, what does the first order condition tell us? Manipulation yields the
condition that

u′(100, 000− πC)

u′(80, 000− πC + C)
=

(1− π)

3π

which gives us a familiar looking equation in that the LHS is a ratio of
marginal utilities. It follows that total consumption under each circumstance
is set so as to set the ratio of marginal utility of wealth equal to some frac-
tion which depends on price and the probabilities. Even without knowing
the precise function we can say something about the insurance behaviour,
however. To do so, let us compute the actuarially fair premium. The
expected loss is $5,000, so that an insurance premium which collects that
amount for the $20,000 insured value would lead to zero expected profits for
the insurance firm: 0.75πC + 0.25(πC − C) = 0⇒ π = 0.25. An actuarially
fair premium simply charges the odds (there is a 1 in 4 chance of a loss, after
all.) If we use this fair premium in the above first order condition we obtain

u′(100, 000− πC)

u′(80, 000− πC + C)
= 1.

Since the utility function is strictly concave it can have the same slope only
at the same point, and we conclude that5

(100, 000− πC) = (80, 000− πC + C)⇒ C = 20, 000.

5Ok, read that sentence again. Do you understand the usage of the word ‘Since’? I
am not “cancelling” the u′ terms, because those indicate a function. Instead the equation
tells us that numerator and denominator must be the same. But for what values of the
independent variable wealth does the function u(·) have the same derivative? For none, if
u(·) is strictly concave. Therefore the function must be evaluated at the same level of the
independent variable.
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This is one of the key results in the analysis of insurance: at actuarially
fair premiums a risk averse consumer will fully insure. Note that
the consumer will not bear any risk in this case: wealth will be $95,000
independent of if the car is stolen, since a $5,000 premium is due in either
case, and if the car is actually stolen it will be replaced. As we have seen
before, this will make the consumer much better off than if he is actually
bearing the gamble with this same expected wealth level. If you draw the
appropriate diagram you can verify that the consumer does not have to pay
any of the amount he would be willing to pay (the difference between the
expected value and the certainty equivalent.)

If we had a particular utility function we could now also compute the
maximal amount the consumer would be willing to pay. We have to be
careful, however, how we set up this problem, since simply increasing π will
reduce the amount of coverage purchased! So instead, let us approach the
question as follows: What fee would the consumer be willing to pay in order
to have access to actuarially fair insurance? Let F denote the fee. Then we
have the consumer choose between

u(95, 000− F ) and 0.25u(80, 000) + 0.75u(100, 000).

(Note that I have skipped a step by assuming full insurance. The left term is
the expected utility of a fully insured consumer who pays the fee, the right
term is the expected utility of an uninsured consumer. You should verify
that the lump sum fee does not stop the consumer from fully insuring at a
fair premium.) For example, if u(·) = ln(·) then simple manipulation yields
F ∼ 426.

It is important to note why we have set up the problem this way. Con-
sider the alternative (based on these numbers and the logarithmic function)
and assume that the total payment of $5,426 which is made in the above case
of a fair premium plus fee, were expressed as a premium. Then we get that
π = 5426/20000 = 0.2713. The first order condition for the choice of C then
requires that (recall that ∂ln(x)/∂x = 1/x)

(80, 000 + 0.7287C)

(100, 000− 0.2713C)
=

0.7287

0.8139
= 0.895318835 ⇒ C = 9, 810.50.

As you can see, if the additional price is understood as a per dollar charge
for insured value, the consumer will not insure fully. Of course this is an
implication of the previous result — the consumer now faces a premium
which is not actuarially fair. Indeed, we could also compute the premium for
which the consumer will cease to purchase any insurance. For logarithmic
utility like this we would want to compute (remember, we are trying to find
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when C = 0 is optimal)

80, 000

100, 000
=

1− π

3π
⇒ π = 0.2941.

As indicated before, there is room to trade between insurance providers and
risk averse consumers. Indeed, as you can verify in one of the questions
at the end of the chapter, there is room for trade between two risk averse
consumers if they face different risk or if they differ in their attitudes towards
risk (degree of risk aversion.)

4.4 The State-Preference Approach

While the above approach lets us focus quite well on the role of probabilities
in consumer choice, it is different in character to the ‘maximize utility subject
to a budget constraint’ approach we have so much intuition about. In the
first order condition for the insurance problem, for example, we had a ratio of
marginal utilities on the one side — but was that the slope of an indifference
curve?

As mentioned previously, we can actually treat consumption as involving
contingent commodities, and will do so now. Let us start by assuming that
the outcomes of any random event can be categorized as something we will
refer to as the states of the world. That is, there exists a set of mutually
exclusive states which are adequate to describe all randomness in the world.
In our insurance example above, for example, there were only two states of
the world which mattered: Either the car was stolen or it was not. Of course,
in more general settings we could think of many more states (such as the car
is stolen and not recovered, the car is stolen but recovered as a write off,
the car is stolen and recovered with minor damage, etc.) In accordance with
this view of the world we now will have to develop the idea of contingent
commodities. In the case of our concrete example with just two states, a
contingent commodity would be delivered only if a particular state (on which
the commodity’s delivery is contingent) occurs. So, if there are two states,
good and bad, then there could be two commodities, one which promises
consumption in the good state, and one which promises consumption in the
bad state. Notice that you would have to buy both of these commodities if
you wanted to consume in both states. Notice also that nothing requires that
the consumer purchase them in equal amounts. They are, after all, different
commodities now, even if the underlying good which gets delivered in each
state is the same. Finally, note that if one of these commodities were missing
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you could not assure consumption in both states (which is why economists
make such a fuss about “complete markets” — which essentially means that
everything which is relevant can be traded. It does not have to be traded,
of course, that is up to people’s choices, but it should be available should
someone want to trade.) Of course, after the fact (ex post in the lingo)
only one of these states does occur, and thus only the set of commodities
contingent on that state are actually consumed. Before the fact (before the
uncertainty is resolved, called ex ante) there are two different commodities
available, however.

Once we have this setting we can proceed pretty much as before in our
analysis. To be concrete let there be just two states, good and bad. We
will now index goods by a subscript b or g to indicate the state in which
they are delivered. We will further simplify things by having just one good,
consumption (or wealth). Given that there are two states, that means that
there are two distinct (contingent) commodities, cg and cb. We may now
assume that the consumer has our usual vN-M expected utility.6 If the
individual assessed a probability of π to the good state occurring, then we
would obtain an expected utility of consumption of U(cg, cb) = πu(cg)+ (1−
π)u(cb).

This expression gives us the expected utility of the consumer. The
consumers’ objective is to maximize expected utility, as before. It might
be useful at this point to assess the properties of this function. As long
as the utility index applied to consumption in each state, u(·), is concave,
this is a concave function. It will be increasing in each commodity, but at
a decreasing rate. We can also ask what the marginal rate of substitution
between the commodities will be. This is easily derived by taking the total
derivative along an indifference curve and rearranging:

πu′(cg)dcg + (1− π)u′(cb)dcb = 0,
dcb

dcg

= − πu′(cg)

(1− π)u′(cb)
.

Note the fact that the MRS now depends not only on the marginal utility
of wealth but also on the (subjective) probabilities the consumer assesses
for each state! Even more importantly, we can consider what is known as
the certainty line, that is, the locus of points where cg = cb. Since the
marginal utility of consumption then is equal in both states (we have state
independent utility here, after all, which means that the same u(·) applies in
each state), it follows that the slope of an indifference curve on the certainty

6Note that this is somewhat more onerous than before now: imagine the states are
indexed by good health and poor health. It is easy to imagine that an individual would
evaluate material wealth differently in these two cases.



74 L-A. Busch, Microeconomics May2004

line only depends on the probability the consumer assesses for each state. In
this case, it is π/(1− π).

The other ingredient is the budget line, of course. Since we have two
commodities, each might be expected to have a price, and we denote these
by pg, pb respectively. The consumer who has a total initial wealth of W
may therefore consume any combination which lies on the budget line pgcg +
pbcb = W , while a consumer who has an endowment of consumption given by
(wg, wb) may consume anything on the budget line pgcg +pbcg = pgwg +pbwb.
Where do these prices come from? As before, they will be determined by
general equilibrium conditions. But if contingent markets are well developed
and competitive, and there is general agreement on the likelihood of the
states, then we might expect that a dollar’s worth of consumption in a state
will cost its expected value, which is just the dollar times the probability
that it needs to be delivered. (I.e., a kind of zero profit condition for state
pricing.) Thus we might expect that pg = π and pb = (1− π).

The budget line also has a slope, of course, which is the rate at which
consumption in one state can be transferred into consumption in the other
state. Taking total derivatives of the budget we obtain that the budget slope
is dcb/dcg = pg/pb. Combining this with our condition on “fair” pricing in
the previous paragraph, we obtain that the budget allows transformation of
consumption in one state to the other according to the odds.

4.4.1 Insurance in a State Model

So let us reconsider our consumer who was in need of insurance in this frame-
work. In order to make this problem somewhat neater, we will reformulate
the insurance premium into what is known as a net premium, which is a
payment which only accrues in the case there is no loss. Since the normal
insurance contract specifies that a premium be paid in either case, we usu-
ally have a payment of premium×Amount in order to obtain a net benefit
of Amount− premium× Amount. One dollar of consumption added in the
state in which an accident occurs will therefore cost premium/(1−premium)
dollars in the no accident state. Thus, let pb = 1 and let pg = P , the net
premium. The consumer will then solve

maxcb,cg
{πu(cg) + (1− π)u(cb)} s.t. P cg + cb = P (100, 000) + 80, 000.

The two first order conditions for the consumption levels in this problem are

πu′(cg)− λP = 0 and (1− π)u′(cb)− λ = 0.
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Figure 4.5: An Insurance Problem in State-Consumption space

Combining them in the usual way we obtain

πu′(cg)

(1− π)u′(cb)
= P.

Now, as we have just seen the LHS of this is the slope of an Indifference
curve. The RHS is the slope of the budget, and so this says nothing but the
familiar “there must be a tangency”.

We have also derived P = π/(1−π) for a fair net premium before. Thus
we get that

πu′(cg)

(1− π)u′(cb)
=

π

1− π
,

which requires that
u′(cg)

u′(cb)
= 1 ⇒ cg

cb

= 1.

Thus this model shows us, just as the previous one, that a risk averse con-
sumer faced with a fair premium will choose to fully insure, that is, choose to
equalize consumption levels across the states. A diagrammatic representation
of this can be found in diagram 3.5, which is standard for insurance prob-
lems. The consumer has an endowment which is off the certainty (45-degree)
line. The fair premium defines a budget line along which the consumer can
reallocate consumption from the good (no loss) state to the bad (loss) state.
Optimum occurs where there is a tangency, which must occur on the cer-
tainty line since then the slopes are equalized. The picture looks perfectly
“normal”, that is, just as we are used from introductory economics.
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4.4.2 Risk Aversion Again

Given the amount of time spent previously on risk-aversion, it is interesting
to see how risk-aversion manifests itself in this setting. Intuitively it might
be apparent that a more risk averse consumer will have indifference curves
which are more curved, that is, exhibit less substitutability (recall that a
straight line indifference curve means that the goods are perfect substitutes,
while a kinked Leontief indifference curve means perfect complements.) It
therefore stands to reason that we might be interested in the rate at which
the MRS is falling. It is, however, much easier to think along the lines of
certainty equivalents: Consider two consumers with different risk aversion,
that is, curvature of indifference curves. For simplicity, let us consider a
point on the certainty line and the two indifference curves for our consumers
through that common point (see Fig. 4.6).
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Figure 4.6: Risk aversion in the State Model

Assume further that consumer B’s indifference curve lies everywhere else
above consumer A’s. We can now ask how much consumption we have to
add for each consumer in order to keep the consumer indifferent between
the certain point and a consumption bundle with some given amount less in
the bad state. Clearly, consumer B will need more compensation in order
to accept the bad state reduction. Looked at it the other way around, this
means that consumer B is willing to give up more consumption in the good
state in order to increase bad state consumption. Note that both assess the
same probabilities on the certainty line, since the slopes of their ICs are the
same. How does this relate to certainty equivalents? Well, a budget line at
fair odds will have the slope − π

1−π
. Consider three such budget lines which

are all parallel and go through the certain consumption point and the two
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gambles which are equivalent for the consumer to the certain point. Clearly
(from the picture) consumer B’s budget is furthest out, followed by consumer
A’s, and furthest in is the budget through the certain point. But we know
that parallel budgets differ only in the income/wealth they embody. Thus
there is a larger reduction in wealth possible for B without reducing his
welfare, compared to A. The wealth reduction embodied in the lower budget
is the equivalent of the certainty equivalent idea before. (The expected value
of a given gamble on such a budget line is given by the point on the certainty
line and that budget, after all.)

4.5 Asset Pricing

Any discussion of models of uncertainty would be incomplete without some
coverage of the main area in which all of this is used, which is the pricing
of assets. As we have seen before, if there is only time to contend with but
returns or future prices are known, then asset pricing reduces to a condition
which says that the current price of an asset must relate to the future price
through discounting. In the “real world” most assets do not have a future
price which is known, or may otherwise have returns which are uncertain —
stocks are a good example, where dividends are announced each year and
their price certainly seems to fluctuate. Our discussion so far has focused on
the avoidance of risk. Of course, even a risk averse consumer will accept some
risk in exchange for a higher return, as we will see shortly. First, however,
let us define two terms which often occur in the context of investments.

4.5.1 Diversification

Diversification refers to the idea that risk can be reduced by spreading one’s
investments across multiple assets. Contrary to popular misconceptions it is
not necessary that their price movements be negatively correlated (although
that certainly helps.) Let us consider these issues via a simple example.

Assume that there exists a project A which requires an investment of
$9,000 and which will either pay back $12,000 or $8,000, each with equal
probability. The expected value of this project is therefore $10,000. Now
assume that a second project exists which is just like this one, but (and
this is important) which is completely independent of the first. How much
each pays back in no way depends on the other. Two investors now could
each invest $4,500 in each project. Each investor then has again a total
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investment of $9,000. How much do the projects pay back? Well, each will
pay an investor either $6,000 or $4,000, each with equal probability. Thus an
investor can receive either $12,000, $10,000, or $8,000. $12,000 or $8,000 are
received one quarter of the time, and half the time it is $10,000. The total
expected return thus is the same. BUT, there is less risk, since we know that
for a risk-averse consumer 0.5u(12)+0.5u(8) < 0.25u(12)+0.25u(8)+0.5u(10)
since 2(0.25u(12) + 0.25u(8)) < 2(0.5u(10)).

Should the investor have access to investments which have negatively
correlated returns (if one is up the other is down) risk may be able to be
eliminated completely. All that is needed is to assume that the second project
above will pay $8,000 when the first pays $12,000, and that it will pay $12,000
if the first pays $8,000. In that case an investor who invests half in each will
obtain either $6,000 and $4,000 or $4,000 and $6,000: $10,000 in either case.
The expected return has not increased, but there is no risk at all now, a
situation which a risk-averse consumer would clearly prefer.

4.5.2 Risk spreading

Risk spreading refers to the activity which lies at the root of insurance.
Assume that there are 1000 individuals with wealth of $35,000 and a 1%
probability of suffering a $10,000 loss. If the losses are independent of one
another then there will be an average of 10 losses per period, for a total
$100,000 loss for all of them. The expected loss of each individual is $100, so
that all individuals have an expected wealth of $34,900. A mutual insurance
would now collect $100 from each, and everybody would be reimbursed in full
for their loss. Thus we can guarantee the consumers their expected wealth
for certain.

Note that there is a new risk introduced now: in any given year more (or
less) than 10 losses may occur. We can get rid of some of this by charging the
$100 in all years and retaining any money which was not collected in order to
cover higher expenses in years in which more than 10 losses occur. However,
there may be a string of bad luck which might threaten the solvency of the
plan: but help is on the way! We could buy insurance for the insurance
company, in effect insuring against the unlikely event that significantly more
than the average number of losses occurs. This is called re-insurance. Since
an insurance company has a well diversified portfolio of (independent) risks,
the aggregate risk it faces itself is low and it will thus be able to get fairly
cheap insurance.
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These kind of considerations are also able to show why there may not
be any insurance offered for certain losses. You may recall the lament on the
radio about the fact that homeowners in the Red River basin were not able
to purchase flood insurance. Similarly, you can’t get earth-quake insurance
in Vancouver, and certain other natural disasters (and man-made ones, such
as wars) are excluded from coverage. Why? The answer lies in the fact that
all insured individuals would have either a loss or no loss at the same time.
That would mean that our mutual insurance above would either require no
money (no losses) or $10,000,000. But the latter requires each participant to
pay $10,000, in which case you might as well not insure! (A note aside: often
the statement that no insurance is available is not literally correct: there may
well be insurance available, but only at such high rates that nobody would
buy it anyways. Even at low rates many people do not carry insurance, often
hoping that the government will bail them out after the fact, a ploy which
often works.)

4.5.3 Back to Asset Pricing

Before we look at a more general model of asset pricing, it may be useful to
verify that a risk-averse consumer will indeed hold non-negative amounts of
risky assets if they offer positive returns. To do so, let us assume the simple
most case, that of a consumer with a given wealth w who has access to a
risky asset which has a return of rg or rb < 0 < rg. Let x denote the amount
invested in the risky asset. Wealth then is a random variable and will be
either wg = (w − x) + x(1 + rg) or wb = (w − x) + x(1 + rb). Suppose the
good outcome occurs with probability π. What will be the choice of x?

max0≤x≤w {πu(w + rgx) + (1− π)u(w + rbx)} .

The first and second order conditions are

rgπu′(w + rgx) + rb(1− π)u′(w + rbx) = 0

r2
gπu′′(w + rgx) + r2

b (1− π)u′′(w + rbx) < 0

The second order condition is satisfied trivially if the consumer is risk averse.
To show under what circumstances it is not optimal to have a zero investment
consider the FOC at x = 0:

rgπu′(w) + rb(1− π)u′(w) ? 0.

The LHS is only positive if πrg + (1 − π)rb > 0, that is, if expected returns
are positive. Notice also that in that case there will be some investment! Of
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course this is driven by the fact that not investing guarantees a zero rate of
return. Investing is a gamble, which the consumer dislikes, but also increases
returns. Even a risk-averse consumer will take some risk for that higher
return!

Now let us consider a more general model with many assets. Assume
that there is a risk-free asset (one which yields a certain return) and many
risky ones. Let the return for the risk-free asset be denoted by R0 and the
returns for the risky assets be denoted by R̃i, each of which is a random
variable with some distribution. Initial wealth of the consumer is w. Finally,
we can let xi denote the fraction of wealth allocated to asset i = 0, . . . , n. In
the second period (we will ignore time discounting for simplicity and clarity)
wealth will be a random variable the distribution of which depends on how
much is invested in each asset. In particular, w̃ = w0

∑n
i=0 xiR̃i, with the

budget constraint that
∑n

i=0 xi = 1. We can transform this expression as
follows:

w̃ = w

[

(1−
n
∑

i=1

xi)R0 +
n
∑

i=1

xiR̃i

]

= w

[

R0 +
n
∑

i=1

xi(R̃i −R0)

]

.

The consumer’s goal, of course, is to maximize expected utility from this
wealth by choice of the investment fractions. That is,

max{x}i
{Eu (w̃)} = max{x}i

{

Eu

(

w

[

R0 +
n
∑

i=1

xi(R̃i −R0)

])}

.

Differentiation yields the first order conditions

Eu′(w̃)(R̃i −R0) = 0, ∀i.

Now we will do some manipulation of this to make it look more presentable
and informative. You may recall that the covariance of two random variables,
X,Y , is defined as COV(X,Y ) = EXY −EXEY. It follows that Eu′(w̃)R̃i =
COV(u′, R̃i)+Eu′(w̃)ER̃i. Using this fact and distributing the subtraction in
the FOC across the equal sign, we obtain for each risky asset i the following
equation:

Eu′(w̃)R0 = Eu′(w̃)ER̃i + COV(u′(w̃), R̃i).

From this it follows that in equilibrium the expected return of asset i
must satisfy

ER̃i = R0 −
COV(u′(w̃), R̃i)

Eu′(w̃)
.
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This equation has a nice interpretation. The first term is clearly the risk-
free rate of return. The second part therefore must be the risk-premium
which the asset must garner in order to be held by the consumer in a utility
maximizing portfolio. Note that if a return is positively correlated with
wealth — that is, if an asset will return much if the consumer is already rich
— then it is negatively correlated with the marginal utility of wealth, since
that is decreasing in wealth. Thus the expected return of such an asset must
exceed the risk free return if it is to be held. Of course, assets which pay
off when wealth otherwise would be low can have a lower return than the
risk-free rate since they, in a sense, provide insurance.

4.5.4 Mean-Variance Utility

The above pricing model required us to know the covariance and expectation
of marginal utility, since, as we have seen before, it is the fact that marginal
utility differs across outcomes which in some sense causes risk-aversion. A
nice simplification of the model is possible if we specify at the outset that
our consumer likes the mean but dislikes the variance of random returns,
i.e., the mean is a good, the variance is a bad. We can then specify a utility
function directly on those two characteristics of the distribution. (The normal
distribution, for example is completely described by these two moments. If
distributions differ in higher moments, this formulation would not be able to
pick that up, however.)

Recall that for a set of outcomes (w1, w2, . . . , wn) with probabilities
(π1, π2, . . . , πn)

The mean is µw =
n
∑

i=1

πiwi,

and the variance is σ2
w =

n
∑

i=1

πi(wi − µw)2.

We now define utility directly on these: u(µw, σw), although it is standard
practice to actually use the standard deviation as I just have done. Risk
aversion is now expressed through the fact that we assume that

∂u(·)
∂µw

= u1(·) > 0 while
∂u(·)
∂σw

= u2(·) < 0.

We will now focus on two portfolios only (the validity of this approach
will be shown in a while.) The risk free asset has a return of rf , the risky
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asset (the “market portfolio”) has a return of ms with probability πs. Let
rm =

∑

πsms and σm =
√

∑

πs(ms − rm)2. Assume that a fraction x of
wealth is to be invested in the risky asset (the market).

The expected return for a fraction x invested will be

rx =
∑

πs (xms + (1− x)rf ) = (1− x)rf + x
∑

πsms.

The variance of this portfolio is

σ2
x =

∑

πs (xms + (1− x)rf − rx)
2 =

∑

πs (xms − xrm)2 = x2σ2
m.

The investor/consumer will maximize utility by choice of x:

maxx {u(xrm + (1− x)rf , xσm)}
FOC u1(·)[rm − rf ] + u2(·)σm = 0

SOC u11(·)[rm − rf ]
2 + u22(·)σ2

m + 2σm[rm − rf ]u12(·) ≤ 0

Assuming that the second order condition holds, we note that we will require
[rm − rf ] > 0 since u2(·) is negative by assumption. We may also note that
we can rewrite the FOC as

−u2(·)
u1(·)

=
rm − rf

σm

.

The LHS of this expression is the MRS between the mean and the standard
deviation, that is, the slope of an indifference curve. The RHS can be seen to
be the slope of the budget line since the budget is a mix of two points, (rf , 0)
and (rm, σm), which implies that the tradeoff of mean for standard deviation
is rise over run: (rm − rf )/σm.

In a general equilibrium everybody has access to the same market and
the same risk free asset. Thus, everybody who does hold any of the market
will have the same MRS — a result analogous to the fact that in our usual
general equilibria everybody will have the same MRS. Of course, this is just
a requirement of Pareto Optimality.

In this discussion we had but one risky asset. In reality there are many.
As promised, we derive here the justification for considering only the so-called
market portfolio. The basic idea is simple. Assume a set of risky assets.
Since we are operating in a two dimensional space of mean versus standard
deviation, one can certainly ask what combination of assets (also known as a
portfolio) will yield the highest mean for a given standard deviation, or, which
is often easier to compute, the lowest standard deviation for a given mean.



Uncertainty 83

0

5

10

15

20

0 5 10 15 20

mean

standard dev.

risk free

market

risk free

market

risk free

market

risk free

market

risk free

market

risk free

market

risk free

market

risk free

market

risk free

market

risk free

market

risk free

market

risk free

market

budget
efficient risk

Figure 4.7: Efficient Portfolios and the Market Portfolio

Let x denote the vector of shares in each of the assets so that
∑

I x = 1.
Define the mean and standard deviation of the portfolio x as µ(x) and σ(x).
Then it is possible to solve

maxx {µ(x) + λ(s− σ(x))} or

minx {σ(x) + λ(m− µ(x)} .

For each value of the constraint there will be a portfolio (an allocation of
wealth across the different risky assets) which achieves the optimum. It
turns out (for reasons which I do not want to get into here: take a finance
course or do the math) that this will lead to a frontier which is concave to
the standard variation axis.

Now, by derivation, any proportion of wealth which is held in risky assets
will be held according to one of these portfolios. But which one? Well, the
consumer can combine any one of these assets with the risk free asset in order
to arrive at the final portfolio. Since this is just a linear combination, the
resulting “budget line” will be a straight line and have a positive slope of
(µx − µf )/σx, where µx, σx are drawn from the efficient frontier. A simple
diagram suffices to convince us that the highest budget will be that which
is just tangent to the efficient frontier. The point of tangency defines the
market portfolio we used above!

Note a couple more things from this diagram. First of all it is clear from
the indifference curves drawn that the consumer gains from the availability of
risky assets on the one hand, and of the risk-free asset on the other. Second,
the market portfolio with which the risk free asset will be mixed will depend
on the return from the risk free asset. Imagine sliding the risk free return



84 L-A. Busch, Microeconomics May2004

up in the diagram. The budget line would have to become flatter and this
means a tangency to the efficiency locus further to the right. Finally, the
precise mix between market and risk free will depend on preferences. Indeed,
there might be people who would want to have more than their entire wealth
in the market portfolio, that is, the tangency to the budget would occur to
the right of the market portfolio. This requires a “leveraged” portfolio in
which the consumer is allowed to hold negative amounts of certain assets
(short-selling.)

4.5.5 CAPM

The above shows that all investors face the same price of risk (in terms of
the variance increase for a given increase in the mean.) It does not tell us
anything about the risk-return trade-off for any given asset, however. Any
risk unrelated to the market risk can be diversified away in this setting,
however, so that any unsystematic risk will not attract any excess returns.
An asset must, however, earn higher returns to the extent that it contributes
to the market risk, since if it did not it would not be held in the market
portfolio. Consideration of this problem in more detail (assume a portfolio
with a small amount of this asset held and the rest in the market, compute
the influence of the asset on the portfolio return and variance, rearrange)
will yield the famous CAPM equation involving the asset’s ‘beta’ a number
which is published in the financial press:

µx = µf + (µm − µf )
σX,M

σ2
M

.

Here x denotes asset x, m the market, f the risk free asset, and σX,M is the

covariance between asset x and the market. The ratio
σX,M

σ2
M

is referred to as

the asset’s beta.

4.6 Review Problems

Question 1: Demonstrate that all risk-averse consumers would prefer an
investment yielding wealth levels 24, 20, 16 with equal probability to one
with wealth levels 24 or 16 with equal probability.

Question 2: Compute the certainty equivalent for an expected utility maxi-
mizing consumer with (Bernoulli) utility function u(w) =

√
w facing a gamble

over $3600 with probability α and $6400 with probability 1− α.
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Question 3: Determine at what wealth levels a consumer with (Bernoulli)
utility function u(w) = lnw has the same absolute risk aversion as a consumer
with (Bernoulli) utility function u(w) = 2

√
w. How do their relative risk

aversions compare at that level. What does that mean?

Question 4: Consider an environment with two states — call them rain,
R, and shine, S, — with the probability of state R occurring known to
be π. Assume that there exist two consumers who are both risk-averse,
vN-M expected utility maximizers. Assume further that the endowment of
consumer A is (10, 5) — denoting 10 units of the consumption good in the
case of state R and 5 units in the case of S — and that the endowment
of consumer B is (5, 10). What are the equilibrium allocation and price?
(Provide a well labelled diagram and supporting arguments for any assertions
you make.)

Question 5: Anna has $10,000 to invest and wants to invest it all in one or
both of the following assets: Asset G is gene-technology stock, while asset
B is stock in a bible-printing business. There are only two states of nature
to worry about, both of which occur with equal probability. One is that
gene-technology is approved and flourishes, in which case the return of asset
B is 0% while the return of asset G is 80%. The other is that religious
fundamentalism takes hold, and gene-technology is severely restricted. In
that case the return of asset B will be 40% but asset G has a return of (-
40%). Anna is a risk-averse expected-utility maximizer with preferences over
wealth represented by u(w).

a) State Anna’s choice problem mathematically.
b) What proportion of the $10,000 will she invest in the gene-technology

stock? (I.e. solve the above maximization problem.)

Question 6∗: Assume that consumers can be described by the following
preferences: they are risk averse over wealth levels, but they enjoy gambling
for its consumption attributes (i.e., while they dislike the risk on wealth which
gambling implies, they get some utility out of partaking in the excitement
(say, they get utility out of daydreaming about what they could do if they
won.)) Let us further assume that consumers only differ with respect to their
initial wealth level and their consumption utility from gambling, but that all
consumers have the same preferences over wealth. In order to simplify these
preferences further, assume that wealth and gambling are separable. We can
represent these preferences over wealth, w, and gambling, g ∈ {0, 1} by some
u(w, g) = v(w) + µig, where v(w) is strictly concave, and µi is an individual
parameter for each consumer. Finally, they are assumed to be expected util-
ity maximizers.

a) Assume for now that the gambling is engaged in via a lottery, in
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which consumers pay a fixed price p for one lottery ticket, and the ticket is
either a “Try Again” (no prize) or “Winner” (Prize won.) Also assume for
simplicity that they can either gamble once or not at all (i.e., each consumer
can only buy one ticket.)

i) First verify that in such an environment the government can make
positive profits. (I.e., verify that some consumers will buy a ticket even if
the ticket price exceeds the expected value of the ticket.

ii) If consumers have identical µi, how does the participation of con-
sumers then depend on their initial wealth level if their preferences exhibit
{constant| decreasing} {absolute |relative} risk aversion? (The above nota-
tion means: consider all (sensible) permutations.)

iii) Assume now that preferences are characterized by decreasing ab-
solute and constant relative risk aversion. Verify that the utility functions
v(w) = ln w and v(w) =

√
w satisfy this assumption. Also assume that the

consumption enjoyment of gambling is decreasing in wealth, that is, con-
sumers with high initial wealth have low µi. (They know what pain it is to
be rich and don’t daydream as much about it.) Who would gamble then?

Question 7∗: Assume that a worker only cares about the income he gen-
erates from working and the effort level he expends at work. Also assume
that the worker is risk averse over income generated and dislikes effort. His
preferences can be represented by u(w, e) =

√
w − e2. The worker generates

income by accepting a contract which specifies an effort level e and the asso-
ciated wage rate w(e). (Since leisure time does not enter in his preferences he
will work full time (supply work inelastically) and we can normalize the wage
rate to be per period income.) The effort level of the worker is not observed
directly by the firm, and thus the worker has an incentive to expend as little
effort as possible. The firm, however, cares about the effort expended, since
it affects the marginal product it gets from employing the worker. It can
conduct random tests of the worker’s effort level with some probability α.
These tests reveal the true effort level employed by the worker. If the worker
is not tested, then it is assumed that he did indeed work at the specified
effort level and will receive the contracted wage. If he is tested and found
to have shirked (not supplied the correct effort level) then a penalty p is
assessed and deducted from the wage of the worker.

a) What relationship has to hold between w(e), e, α and p in order for a
worker to provide the correct effort level if p is a constant (i.e., not dependent
on either the contracted nor the observed effort level)?

b) If we can make p depend on the actual deviation in effort which we
observe, what relationship has to be satisfied then?

c) Is there any economic insight hidden in this? Think about how these
problems would change if the probability of detection somehow depended on
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the effort level (i.e., the more I deviate from the correct effort level, the more
likely I might be caught.)

Question 8: A consumer is risk averse. She is faced with an uncertain
consumption in the future, since she faces the possibility of an accident.
Accidents occur with probability π. If an accident occurs, it is either really
bad, in which case she looses B, or minor, in which case her loss is M < B.
Bad accidents represent only 1/5 of all accidents, all other accidents are
minor. Without the accident her consumption would be W > B.

a) Derive her optimal insurance purchases if the magnitude of the loss is
publicly observable and verifiable and insurance companies make zero profits.
More explicitly, if the type of accident is verifiable then a contract can be
written contingent on the type of loss. The problem thus is equivalent to a
problem where there are two types of accident, each of which occurs with a
different probability and can be insured for separately at fair premiums.

b) Now consider the case if the amount of loss is private information. In
this case only the fact that there was an accident can be verified (and hence
contracted on), but the insurer cannot verify if the loss was minor or major,
and hence pays only one fixed amount for any kind of accident. Assume
zero profits for the insurer, as before, and show that the consumer now over-
insures for the minor loss but under-insures for the bad loss, and that her
utility thus is lowered. (Note that the informational distortion therefore leads
to a welfare loss.)

Question 9: Assume a mean-variance utility model, and let µ denote the
expected level of wealth, and σ its variance. Take the boundary of the efficient
risky asset portfolios to be given by µ =

√
σ − 16. Assume further that there

exists a risk-free asset which has mean zero and standard deviation zero (if
this bothers you, you can imagine that this is actually measuring the increase
in wealth above current levels.) Let there be two consumers who have mean-

variance utility given by u(µ, σ) = µ− σ2

64
and u(µ, σ) = 3µ− σ2

64
respectively.

Derive their optimal portfolio choice and contrast their decisions.

Question 10: Fact 1: The asset pricing formula derived in class states that

ER̃i = R0 −
Cov(U ′(w̃), R̃i)

EU ′(w̃)
.

Fact 2: A disability insurance contract can be viewed as an asset which pays
some amount of money in the case the insured is unable to generate income
from work.

Use Facts 1 and 2 above to explain why disability insurance can have
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a negative return, (that is, why the price of the contract may exceed the
expected value of the payment) if viewed as an asset in this way.

Question 11: TRUE/FALSE/UNCERTAIN: Provide justification for
your answers via proof, counter-example or argument.

1) The optimal amount of insurance a risk-loving consumer purchases
is characterized by the First Order Condition of his utility maximization
problem, which indicates a tangency between an indifference curve and a
budget line.

2) For a consumer who is initially a borrower, the utility level will
definitely fall if interest rates increase substantially.

3) The utility functions

(3000 ∗ lnx1 + 6000 ∗ lnx2)

12
+ 2462 and Exp(x

1/3
1 x

2/3
2 )

represent the same consumer preferences.
4) A risk-averse consumer will never pay more than the expected value

of a gamble for the right to participate in the gamble. A risk-lover would, on
the other hand.

5) The market rate of return is 15%. The stock of Gargleblaster Inc. is
known to increase to $117 next period, and is currently trading for $90. This
market (and the current stock price of Gargleblaster Inc.) is in equilibrium.

6) Under Risk-Variance utility functions, all consumers who actually
hold both the risk-free asset and the risky asset will have the same Marginal
Rate of Substitution between the mean and the variance, but may not have
the same investment allocation.

Question 12∗: Suppose workers have identical preferences over wealth only,
which can be represented by the utility function u(w) = 2

√
w. Workers are

also known to be expected utility maximizers. There are three kinds of jobs
in the economy. One is a government desk job paying $40,000.00 a year. This
job has no risk of accidents associated with it. The second is a bus-driver.
In this job there is a risk of accidents. The wage is $44,100.00 and if there is
an accident the monetary loss is $11,700.00. Finally a worker could work on
an oil rig. These jobs pay $122,500.00 and have a 50% accident probability.
These are all market wages, that is, all these jobs are actually performed in
equilibrium.

a) What is the probability of accidents in the bus driver occupation?
b) What is the loss suffered by an oil rig worker if an accident occurs

there?
c) Suppose now that the government institutes a workers’ compensation

scheme. This is essentially an insurance scheme where each job pays a fair
premium for its accident risk. Suppose that workers can buy this insurance
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in arbitrary amounts at these premiums. What will the new equilibrium
wages for bus-drivers and oil rig workers be? Who gains from the workers’
compensation?

d) Now suppose instead that the government decides to charge only one
premium for everybody. Suppose that of the workers in risky jobs 40% are
oil rig workers and 60% are bus drivers. Suppose that they can buy as much
or little insurance as they wish. How much insurance do the two groups buy?
Who is better off, who is worse off in this case (at the old wages)? Can we
say what the new equilibrium wages would have to be?

Question 13∗: Prove that state-independent expected utility is homothetic
if the consumer exhibits constant relative risk aversion. (This question arises
since indifference curves do have the same slope along the certainty line. So
could they have the same slope along any ray from the origin? In that case
they would be homothetic.)



90 L-A. Busch, Microeconomics May2004



Chapter 5

Information

In the standard model of consumer choice discussed in chapter 1, as well as
the model of uncertainty developed in chapter 3, it was assumed that the
decision maker knows all relevant information. In chapter 1 this meant that
the consumer knows the price of all goods, as well as the precise features of
each good (all characteristics relevant to the consumer.) In chapter 3 this in
particular implied that the consumer has information about the probabilities
of states or outcomes. Not only that, this information is symmetric, so that
all parties to a transaction have the same information. Hence in chapter 3
the explicit assumption that the insurance provider has the same knowledge
of the probabilities as the consumer.

What if these assumptions fail? What if there is no complete and sym-
metric information? Fundamentally, one of the key problems is asymmetric
information — when one party to a transaction knows something relevant
to the transaction which the other party does not know. This quite clearly
will lead to problems, since Pareto efficiency necessitates that all available
information is properly incorporated. Consider, for example, the famous
“Lemon’s Problem”:1 Suppose a seller knows the quality of her used car,
which is either high or low. The seller attaches values of $5000 or $1000 to
the two types of car, respectively. Buyers do not know the quality of a used
car and have no way to determine it before purchase. Buyers value good used
cars at $6000 and bad used cars at $2000. Note that it is Pareto efficient
in either case for the car to be sold. Will the market mechanism work in
this case? Suppose that it is known by everybody that half of all cars are
good, and half are bad. To keep it simple, suppose buyers and sellers are risk

1This kind of example is due to Akerlof (1970) Quarterly Journal of Economics, a paper
which has changed economics.

91
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neutral. Buyers would then be willing to pay at most $4000 for a gamble
with even odds in which they either receive a good or a bad used car. Now
suppose that this were the market price for used cars. At this price only bad
cars are actually offered for sale, since good car buyers rather keep theirs,
since their valuation of their own car exceeds the price. It follows that this
price cannot be an equilibrium price. It is fairly easy to verify that the only
equilibrium would have bad cars trade at a price somewhere between $1000
and $2000 while good cars are not traded at all. This is not Pareto efficient.

Of course, it is not necessary that there be asymmetric information.
Suppose that there exist many restaurants, each offering slightly different
combinations of food and ambiance. Consumers have tastes over the char-
acteristics of the meals (how spicy, what kind of meat, if any meat at all;
Italian, French, eastern European, Japanese, Egyptian, etc.) as well as the
kind of restaurant (formal, romantic, authentic, etc.) as well as the general
quality of the cooking within each category. In a Pareto efficient general
equilibrium each consumer must frequent (subject to capacity constraints)
the most preferred restaurant, or if that is full the next preferred one. Can
we expect this to be the equilibrium?2 To see why the general answer may
be “No” consider a risk averse consumer in an environment where a dining
experience is necessary in order to find out all relevant characteristics of a
restaurant. Every visit to a new place carries with it the risk of a really
unpleasant experience. If the expected benefit of finding a better place than
the one currently known does not exceed the expected cost of having a bad
experience, the consumer will not try a new restaurant, and hence will not
find the best match!

What seems to be important then, are two aspects of information: One,
can all relevant information be acquired before the transactions is com-
pleted?; Two, is the information symmetric or asymmetric?

Aside from a classification of problems into asymmetric or symmetric in-
formation, it is common to distinguish between three classes of goods, based
on the kind of informational problems they present: search goods, experience
goods, and (less frequently) faith goods. A search good is one for which the
consumer is lacking some information, be it price or some attribute of the
good, which can be fully determined before purchase of the good. Anytime

2This is a question similar to one very important in labour economics: are workers
matched to the correct jobs, that is, are the characteristics of workers properly matched
to the required characteristics of the job? These kind of problems are analysed in the large
matching literature. In this literature you will find interesting papers on stable marriages
— is everybody married to their most preferred partner, or could a small coalition swap
partners and increase their welfare?
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the consumer can discover all relevant aspects before purchasing we speak of
a search good. Supposing that search is costly, which seems reasonable, we
can then model the optimal search behaviour of consumers by considering
the (marginal) benefits and (marginal) costs of search. Applying such think-
ing to labour markets we can study the efficiency effects of unemployment
insurance; or we can apply it to advertising, which for such goods focuses
on supplying the missing information, and is therefore possibly efficiency
enhancing.

For some goods such a determination of all relevant characteristics may
not be possible. Nobody can explain to you how something tastes, for ex-
ample; you will have to consume the good to find out. Similarly for issues
of quality. Inasmuch as this refers to how long a durable good lasts, this
can only be determined by consuming the good and seeing when (and if)
it breaks. Such goods are called experience goods. The consumer needs
to purchase the good, but the purchase and consumption of the good (or
service!) will fully inform the consumer. This situation naturally leads to
consumers trying a good, but maybe not necessarily finding the best match
for them. Advertising will be designed to make the consumer try the product
— free samples could be used.3 Why would the consumer not necessarily find
the best product? If there is a cost to unsatisfactory consumption experi-
ences this will naturally arise. As in the restaurant example above. Similar
examples can be constructed for hair cuts, and many other services.

What if the consumer never finds out if the product performs its func-
tion? This is the natural situation for many medical and religious services.
The consumer will not discover the full implications until it is (presumably)
too late. Such goods are termed faith goods and present tremendous prob-
lems to markets. In our current society the spiritual health of consumers is
not judged to be important, and so the market failure for religious services is
not addressed.4 Health, in contrast, is judged important — since consumers
value it, for one, and since there are large externalities in a society with a
social safety net — and thus there is extensive regulation for health care
services in most societies.5 Since education also has certain attributes of a

3It used to be legal for cigarette manufacturers to distribute “sample packs” for free,
allowing consumers to experience the good without cost. The fact that nicotine is addictive
to some is only helpful in this regard, as any local drug pusher knows: they also hand out
free sample packs in schools.

4A convincing argument can be made that societies which prescribe one state religion
do so not in an attempt to maximize consumer welfare but tax revenue and control. The
Inquisition, for example, probably had little to do with a concern for the welfare of heretics.
Note also that I am speaking especially with respect to religions in which the “afterlife”
plays a large role. We will encounter them again in the chapter on game theory.

5Interesting issues arise when the provision of health care services is combined with the
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faith good — in the sense that it is very costly to unlearn, or to repeat the
education — we also see strong regulation of education in most societies.6

Note that religion and health care probably differ in another dimen-
sion: in health care there is information asymmetry between provider and
consumer; it may be argued that in religion both parties are equally unin-
formed.7 Presumably the fact that information is asymmetric makes it easier
to exploit the uninformed party on the one hand, and to regulate on the
other.8 The government attempts to combat this informational asymmetry
by certifying the supply.

Aside from all the above, there are additional problems with informa-
tion. These days everybody speaks of the “information economy”. Clearly
information is supposed to have some kind of value and therefore should
have a price. However, while that is clear conceptually, it is far from easy
to incorporate information into our models. Information is not a good like
most others. For one, it is hard to measure. There are, of course, mea-
surements which have been derived in communications theory — but they
often measure the amount of meaningful signals versus some noise (as in the
transmission of messages.) These measurements measure if messages have
been sent, and how many. Economists, in contrast, are concerned with what
kind of message actually contains relevant information and what kind may be
vacuous. Much care is therefore taken to define the informational context of
any given decision problem (we will encounter this again in the game theory
part, where we will use the term information set to denote all situations
in which the same information has been gathered, loosely speaking.)

Aside from the problem of defining and measuring information, it is also
a special good since it is not rivalrous (a concept you may have encountered
in ECON 301): the fact that I possess some information in no way impedes
your ability to have the same information. Furthermore, the fact that I
“consume” the information somehow (let’s say by acting on it) does not stop
you from consuming it or me from using it again later. There are therefore

provision of spiritual services.
6This is regulation for economically justifiable reasons. Because education is so costly

to undo or repeat it is also frequently meddled with for “societal engineering” reasons.
7I am not trying to belittle beliefs here, just pointing to the fact that while a medical

doctor may actually know if a prescribed treatment works (while the patient does not),
neither the religious official or the follower of a faith know if the actions prescribed by the
faith will “work”.

8Note the weight loss and aphrodisiac markets, or cosmetics, for example. Little dif-
ference between these and the “snake oil cures” of the past seems to exist. Regulation can
take the simple form that only “verifiable” claims may be made.
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large public good aspects to information which require special consideration.9

The long and short of this is that standard demand-supply models often don’t
work, and that markets will in general misallocate if information is involved,
which makes it even more important to have a good working model. A
complete study of this topic is outside the scope of these notes, however. In
what follows we will only outline some specific issues in further detail.

5.1 Search

One of the key breakthroughs in the economics of information was a simple
model of information acquisition. The basic idea is a simple one (as all
good ideas are.) A consumer lacks information — say about the price at
which a good may be bought. Clearly it is in the consumer’s interest not to
be “fleeced,” which requires him to have some idea about what the market
price is. In general the consumer will not know what the lowest price for
the product is, but can go to different stores and find out what their price
is. The more stores the consumer visits the better his idea about what the
correct price might be — the better his information — but of course the
higher his cost, since he has to visit all these stores. An optimizing consumer
may be expected to continue to find new (hopefully) lower prices as long
as the marginal benefit of doing so exceeds the marginal cost of doing so.
Therefore we “just” need to define benefits and costs and can then apply our
standard answer that the optimum is achieved if the marginal cost equals
the marginal benefit!

The problem with this is the fact that we will have to get into sampling
distributions and other such details (most of which will not concern us here)
to do this right. The reason for this is that the best way to model this
kind of problem is as the consumer purchasing messages (normally: prices)
which are drawn from some distribution. For example: let us say that the
consumer knows that prices are distributed according to some cumulative
distribution function F (z) =

∫ z

0
f(p)dp, where f(p) is the (known) density. If

the consumer where to obtain n price samples (draws) from this distribution

9This is the problem in the Patent protection fight: Once somebody has invented
(created the information for) a new drug the knowledge should be freely available — but
this ignores the general equilibrium question of where the information came from. The
incentives for its creation will depend on what property rights are enforceable later on.
For while two firms both may use the information, a firm may only really profit from it if
it is the sole user.
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then the probability that any given sample (say p0) is the lowest will be

[1− F (p0)]
n−1f(p0).

(This formula should make sense to you from Econometrics or Statistics: we
are dealing with n independent random variables.) From this it follows that
the expected value of the lowest price after having taken a sample of n prices
is

pn
low =

∫ ∞

0

p[1− F (p)]n−1f(p)dp.

Note that this expected lowest sample decreases as n increases, but at a
decreasing rate: the difference between sampling n times and n− 1 times is

pn
low − pn−1

low = −
∫ ∞

0

pF (p)[1− F (p)]n−2f(p)dp < 0.

So additional sampling leads to a benefit (lower expected price) but with a
diminishing margin.

What about cost? Even with constant (marginal) cost of sampling we
would have a well defined problem and it is easy to see that individuals
with higher search costs will have lower sample sizes and thus pay higher ex-
pected prices. Also note that the lowest price paid is still a random variable,
and hence consumers do not buy at the same price (which is inefficient, in
general!) Computing the variance you would observe that dispersion of the
lowest price is decreasing in n — that means that the lower the search costs
the ‘better’ the market can be expected to work. Indeed, competition policy
is concerned with this fact in some places and attempts to generate rules
which require that prices be posted (lowering the cost of search).

Any discussion of search would be lacking if we did not point out that
search is normally sequential. In the above approach n messages where
bought, with n predetermined. This is the equivalent of visiting n stores
for a quote irrespective of what the received quotes are. The dynamic prob-
lem is the much more interesting one and has been quite well studied. We
will attempt to distill the most important point and demonstrate it by way
of a fairly simple example. The key insight into this kind of problem is that
it is often optimal to employ a stopping rule.10 That is, to continue sam-
pling until a price has been obtained which is below some preset limit, at
which point search is abandoned and the transaction occurs (a sort of “good
enough” attitude.) The price at which one decides to stop is the reservation

10It does depend on the distributional assumptions we make on the samples — inde-
pendence makes what follows true.
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price — the highest price one is willing to pay! In order to derive this price
we will have to specify if one can ‘go back’ to previous prices, or if the trade
will have fallen through if one walks away. The latter is the typical setup in
the matching literature in labour economics, the former is a bit easier and
we will consider it first.

Suppose the cost of another sample (search effort) is c. The outcome of
the sample is a new price p, which will only be of benefit if it is lower than
the currently known minimum price. Evaluated at the optimal reservation
price pR, the expected gain from an additional sample is therefore the savings
pR−p, “expected over” all prices p < pR. If these expected savings are equal
to the cost of the additional sample, then the consumer is just indifferent
between buying another sample or not, and thus the reservation price is
found:

pR satisfies

∫ pR

0

(pr − p)f(p)dp = c.

Next, consider the labour market, where unemployed workers are search-
ing for jobs. This is the slightly more complex case where the consumer
cannot return to a past offer. Also, the objective is to find the highest price.
First determine the value of search, V , which is composed of the cost, the
expected gain above the wage currently on the table, and the fact that a
lower wage might arise which would indicate that another search is needed.
Thus, assuming a linear utility function for simplicity (no risk aversion), and
letting p stand for wages

V = −c +

∫ ∞

pR

pf(p)dp + V

∫ pR

0

f(p)dp =⇒ V =
−c +

∫∞

pR
pf(p)dp

1− F (pR)
.

Note that I assume stationarity here and the fact that one pR will do (i.e.,
the fact that the reservation wage is independent of how long the search has
been going on.) All of these things ought to be shown for a formal model.
We now will ask what choice of pR will maximize the value above (which is
the expected utility from searching.) Taking a derivative we get

−pRf(pR)(1− F (pR)) + f(pR)(−c +
∫∞

pR
pf(p)dp)

(1− F (pR))2
= 0.

Simplifying and rearranging we obtain
∫ ∞

pR

pf(p)dp− pR = c− pRF (pR).

The LHS of this expression is the expected increase in the wage, the RHS
is the cost of search, which consists of the actual cost of search and the fact
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that the current wage is foregone if a lower value is obtained. What now will
be the effect of a decrease in the search cost c, for example if the government
decides to subsidize non-working (searching) workers? This would lower c,
and the LHS would have to fall to compensate, which will occur only if a
higher pR is chosen. Of course, a higher pR lowers the RHS further. In
mathematical terms it is easy to compute that

dpR

dc
=

−1

1− F (pR)
.

Unemployment insurance will increase the reservation wage (and thus unem-
ployment — note the pun: it ensures unemployment!) The reason is that our
workers can be more choosy and search for the “right” job. They become
more discriminating in their job search. Note that this is not necessarily
bad. If the quality of the match (suitability of worker and firm with each
other) is reflected in a higher wage, then this leads to better matches (fewer
Ph.D. cab drivers). This may well be desirable for the general equilibrium
efficiency properties of the model.

Now, this model is quite simplistic. More advanced models might take
into account eligibility rules. In those models unemployment insurance can
be shown to cause some workers to take bad jobs (because that way they can
qualify for more insurance later.) Similar models can also be used to analyse
other matching markets. The market for medical interns comes to mind, or
the marriage market.

In closing let us note that certain forms of advertising will lower search
costs (since consumers now can determine cheaply who has what for sale
at which price) and thus are efficiency enhancing (less search, less resources
spent on search, and lower price dispersion in the market.) Other forms of
advertising (image advertising) do not have this function, however, and will
have to be looked at in a different framework. This is where the distinction
between search goods and experience goods comes in.

5.2 Adverse Selection

Most problems which will concern us in this course are actually of a different
nature than the search for information above. What we are interested in
most are the problems which arise because information is asymmetric. This
means that two parties to a transaction do not have the same information,
as is the case if the seller knows more about the quality (or lack thereof) of
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Figure 5.1: Insurance for Two types

his good than the buyer, or if the buyer knows more about the value of the
good to himself than the seller. In these types of environments we run into
two well known problems, that of adverse selection (which you may think
of as “hidden property”) and moral hazard (“hidden action.”) We will deal
with the former in this section.

Adverse selection lies at the heart of Akerlof’s Lemons Problem. These
kind of markets lead naturally to the question if the informed party can
send some sort of signal to reveal information. But how could they do so?
Simply stating the fact that, say, the car is of good quality will not do, since
such a statement is free and would also be made by sellers of bad cars (it is
not incentive compatible.) Sometimes this problem can be fixed via the
provision of a warranty, since a warranty makes the statement that the car is
good more costly to sellers of bad cars than of cars which are, in fact, good.

Let us examine these issues in our insurance model. Assume two states,
good and bad, and assume two individuals who both have wealth endowment
(wg, wb); wg > wb. Suppose that these individuals are indistinguishable to the
insurance company, but that one individual is a good risk type who has a
probability of the good state occurring of πH , while the other is a bad risk
type with probability of the good state of only πL < πH . To be stereotypical
and simplify the presentation below, assume that the good risk is female, the
bad risk male, so that grammatical pronouns can distinguish types in what
follows. As we have seen before, the individuals’ indifference curves will have
a slope of −πi/(1− πi) on the certainty line.
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If there were full information both types could buy insurance at fair
premiums and would choose to be on the certainty line on their respective
budget lines (with the high risk type on a lower budget line and with a lower
consumption in each state.) However, with asymmetric information this is
not a possible outcome. The bad risk cannot be distinguished from the good
risk a priori and therefore can buy at the good risk premium. Now, if he were
to maximize at this premium we know that he would over insure — and this
action would then distinguish him from the good risk. The best he can do
without giving himself away is to buy the same insurance coverage that our
good risk would buy, in other words to mimic her. Thus both would attempt
to buy full insurance for a good type.

We now have to ask if this is a possible equilibrium outcome. The answer
is NO, since the insurance company now would make zero (expected) profits
on her insurance contract, but would loose money on his insurance contract.
Consider the profit function (and recall that pi = πi):

(1− πH)(wg − wb)− (1− πL)(wg − wb) < 0.

Foreseeing this fact, the insurance company would refuse to sell insurance at
these prices. Well then, what is the equilibrium in such a market? There
seem to be two options: either both types buy the same insurance (this
is called pooling behaviour) or they buy different contracts (this is called
separating behaviour.)

Does there exist a pooling equilibrium in this market? Consider a larger
market with many individuals of each of the two types. Let fH denote the
proportion of the good types (πH) in the market. An insurer would be
making zero expected profits from selling a common policy for coverage of I
at a premium of p to all types if and only if

fH(πHpI − (1− πH)(1− p)I) + (1− fH)(πLpI − (1− πL)(1− p)I) = 0.

This requires a premium

p = (1− πL)− fH(πH − πL).

Note that at this premium the good types subsidize the bad types, since the
former pay too high a premium, the latter too low a premium. In Figure
5.2, this premium is indicated by a zero profit locus (identical to the con-
sumers’ budget) at an intermediate slope (labelled ‘market’.) Any proposed
equilibrium with pooling would have to lie on this line and be better than
no insurance for both types. Such a point might be point M in the figure.
However, this cannot be an equilibrium. In order for it to be an equilibrium
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Figure 5.2: Impossibility of Pooling Equilibria

nobody must have any actions available which they could carry out and pre-
fer to what is proposed. Consider, then, any point in the area to the right of
the zero profit line, below the bad type’s indifference curve, and above the
good type’s indifference curve: a point such as D. This contract, if proposed
by an insurance company, offers less insurance but at a better price. Only
the good type would be willing to take it (she would end up on a higher
indifference curve). Since it is not all the way over on the good type zero
profit line, the insurance company would make strictly positive profits. Of
course, all bad types would remain at the old contract M , and since this
is above the zero profit line for bad types whoever sold them this insurance
would make losses. Notice that the same arguments hold whatever the initial
point. It follows that a pooling equilibrium cannot exist.

Well then, does a separating equilibrium exist? We now would need
two contracts, one of which is taken by all bad types and the other by all
good types. Insurance offerers would have to make zero expected profits. Of
course, since each type takes a different contract the insurer will know who
is who from their behaviour. This suggests that we look at contracts which
insure the bad risks fully at fair prices. For the bad risk types to accept
this type of contract the contract offered to the good risk type must be on
a lower indifference curve. It must also be on the fair odds line for good
types for there to be zero profits. Finally it must be acceptable to the good
types. This suggests a point such as A in the Figure 5.3. There now are
two potential problems with this. One is that the insurer and insured of
good type would like to move to a different point, such as B, after the type
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Figure 5.3: Separating Contracts could be possible

is revealed. But if that would indeed happen then it can’t, in equilibrium,
because the bad types would foresee it and pretend to be good in order then
to be mistaken for good. The other problem is that the stability of such
separating equilibria depends on the mix of types in the market. If, as in the
Figure 5.3, the market has a lot of bad types this kind of equilibrium works.
But what if there are only a few bad types? In that case an insurer could
deviate from our proposed contract and offer a pooling contract which makes
strictly positive profits and is accepted by all in favour over the separating
contract. This is point C in Figure 5.4. Of course, while this deviation
destroys our proposed equilibrium it is itself not an equilibrium (we already
know that no pooling contract can be an equilibrium.) This shows that a
small proportion of bad risks who can’t be identified can destroy the market
completely!

Notice the implications of these findings on life or health insurance mar-
kets when there are people with terminal diseases such as AIDS or Hepatitis
C, or various forms of cancer. The patient may well know that he has this
problem, but the insurance company sure does not. Of course, it could re-
quire testing in order to determine the risk it will be exposed to. Our model
shows that doing so would make sure that everybody has access to insur-
ance at fair rates and that there is no cross-subsidization. This is clearly
efficient. However, it will reduce the welfare of consumers with these dis-
eases. Indeed, given that AIDS, for example, means a very high probability
of seriously expensive treatment, the insurance premiums would be very high
(justifiably so, by the way, since the risk is high.) What ought society do
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Figure 5.4: Separating Contracts definitely impossible

about this? Economics is not able to answer that question, but it is able
to show the implications of various policies. For example, banning testing
and forcing insurance companies to bear the risk of insuring such customers
might make the market collapse, in the worst scenario, or will at least lead
to inefficiency for the majority of consumers. It would also most likely tend
to lead to “alternative” screening devices — the insurance company might
start estimating consumers’ “lifestyle choices” and then discriminate based
on that information. Is that an improvement? An alternative would be to
let insurance operate at fair rates but to directly subsidize the income of the
affected minority. (This may cause “moral” objections by certain segments
of the population.)

5.3 Moral Hazard

Another problem which can arise in insurance markets, and indeed in any
situation with asymmetric information, is that of hidden actions being taken.
In our insurance example it is often possible for the insured to influence the
probability of a loss: is the car locked? Are there anti-theft devices installed?
Are there theft and fire alarms, sprinklers? Do the tires have enough tread
depth, and are they the correct tire for the season (in the summer a dedicated
summer tire provides superior breaking and road holding to a M&S tire, while
in the winter a proper winter tire is superior.) Some of these actions are
observable and will therefore be included in the conditions of the insurance
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contract. For example, in Germany your insurance will refuse to pay if you
do not have “approved” tires, or if the car was not locked and this can
be established. Indeed, insurance for cars without anti-theft devices is now
basically unaffordable since theft rates are so high since the ‘iron curtain’
opened.11 If you insure your car as parked in a closed parking garage and
then leave it out over night your insurance may similarly refuse to pay! Other
actions are not so easily verified, however. How aggressively do you drive?
How many risks do you decide to take on a given day? This is often not
observable but nevertheless in your control. If the avoidance of accidents is
costly to the insured in any way, then he can be expected to pick the optimal
level of the (unobservable) action — optimal for himself, not the insurance
company, that is.

As a benchmark, let us consider an individual who faces the risk of loss L.
The probability of the loss occurring depends on the amount of preventive
action, A, taken and is denoted π(A). It would appear logical to assume
that π′(A) < 0, π′′(A) > 0. The activity costs money, and cost is c(A) with
c′(A) > 0, c′′(A) > 0. In the absence of insurance the individual would choose
A so as to

maxA{π(A)u(w − L− c(A)) + (1− π(A))u(w − c(A))}.

The first order condition for this problem is

π′(A)u(w − L− c(A))− c′(A)π(A)u′(w − L− c(A)) −
π′(A)u(w − c(A))− c′(A)(1− π(A))u′(w − c(A)) = 0.

Thus the optimal A∗ satisfies

c′(A∗) =
π′(A∗)(u(w − L− c(A))− u(w − c(A∗)))

π(A∗)u′(w − L− c(A∗))− (1− π(A∗))u′(w − c(A∗))
.

Now consider the consumer’s choice when insurance is available. To keep
it simple we will assume that the only available contract has a premium of
π(A∗) and is for the total loss L. Note that this would be a fair premium if the
consumer continues to choose the level A∗ of abatement activity. However,
the maximization problem the consumer now faces becomes (the consumer
will assume the premium fixed)

maxA{π(A)u(w − pL− c(A)) + (1− π(A))u(w − pL− c(A))}.

The first order condition for this problem is

π′(A)u(·)− c′(A)π(A)u′(·)− π′(A)u(·)− c′(A)(1− π(A))u′(·) = 0.

11Yes, I am suggesting that most stolen cars end up in former eastern block countries
— it is a fact.
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Thus the optimal A∗ satisfies

c′(Â) = 0.

Clearly (and expectedly) the consumer will now not engage in the activity at
all. It follows that the probability of a loss is higher and that the insurance
company would loose money. If we were to recompute the level of A at a
fair premium for π(0) we would find that the same is true: no effort is taken.
The only way to elicit effort is to expose the consumer to the right incentives:
there must be a reward for the hidden action. A deductible will accomplish
this to some extent and will lead to at least some effort being taken. This
is due to the fact that the consumer continues to face risk (which is costly.)
The amount of effort will in general not be the optimal, however.

5.4 The Principal Agent Problem

To conclude the chapter on information here is an outline of the leading
paradigm for analysing asymmetric information problems. Most times one
(uninformed) party wishes to influence the behavior of another (informed)
party, the problem can be considered a principal-agent problem. This kind
of problem is so frequent that it deserved its own name and there are books
which nearly exclusively deal with it. We will obviously have only a much
shorter introduction to the key issues in what follows.

First note that this is a frequent problem in economics, to say the least.
Second, note that at the root of the problem lies asymmetric information.
We are, generically, concerned with situations in which one party — the
principal — has to rely on some other party — the agent — to do something
which affects the payoff of the first party. This in itself is not the problem,
of course. What makes it interesting is that the principal cannot tell if the
agent did what he was asked to do, that is, there is a lack of information,
and that the agent has incentives not to do as asked. In short, there is a
moral-hazard problem. The principal-agent literature explores this problem
in detail.

5.4.1 The Abstract P-A Relationship

We will frame this analysis in its usual setting, which is that of a risk-neutral
principal who tries to maximize (expected) profits, and one agent, who will
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have control over (unobservable) actions which influence profits. Call the
principal the owner and the agent the manager. The agent/manager will be
assumed to have choice of a single item, what we shall call his effort level
e ∈ [e, e]. This effort level will be assumed to influence the level of profits
before manager compensation, called gross-profits, which you may think of as
revenue if there are no other inputs. More general models could have multiple
dimensions at this stage. The manager’s preferences will be over monetary
reward (wages/income) and effort: U(w, e). We assume that the manager is
an expected utility maximizer. Also assume that the manager is risk-averse
(that is u1(·, ·) > 0, u11(·, ·) < 0) and that effort is a bad (u2(·, ·) < 0.)

The owner can not observe the manager’s effort choice. Instead, only
the realization of gross profits is observed. Note at this stage that this in
itself does not yet cause a moral-hazard problem, since if the relationship
between effort and profit is known we can simply invert the profit function
to deduce the effort level. Therefore we need to introduce some randomness
into the model. Let ρ be a random variable which also influences profits and
which is not directly observable by the owner either. It could be known to the
manager, but we will have to assume that it will become known only after the
fact, so that the manager cannot condition his effort choice on the realization
of ρ. Let the relationship between effort, profits and the random variable be
denoted by Π(e, ρ). Note that Π(e, ρ) will be a random variable itself. All
expectations in what follows will be taken with respect to the distribution of
ρ. EΠ(e, ρ), for example, will be the expected profits for effort level e.

Since the owner can only observe profits, the most general wage contract
he can offer the manager will be a function w(Π). This formulation includes
a fixed wage as well as all wage plus bonus schemes, or share contracts (where
the manager gets a fixed share of profits.)

Let us first, as a benchmark, determine the efficient level of effort, which
would be provided under full information. In that case we would have to solve
the Pareto problem, that is, solve

maxe,w {EΠ(e, ρ)− w s.t. U(w, e) = u} .

Here u is a level of utility sufficient to make the manager accept the contract.
Note also that in formulating this problem like this I have already used the
knowledge that a risk-neutral owner should fully insure a risk-averse manager
by offering a constant wage.

Assuming no corner solutions, it is easy to see that we would want to
set the effort level such that the marginal benefit of effort (in terms of higher
expected profits) is related to the marginal cost (in terms of higher disutility
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of effort, which will have to be compensated via the wages). In particular,
we need that

EΠe(·, ·) =
w

Uw(·, ·)Ue(·, ·).

What if effort is not observable? In that case we will solve the model
“backwards”: given any particular wage contract faced by the manager, we
will determine the manager’s choice. Then we will solve for the optimal
contract, “foreseeing” those choices. Assume in what follows that the owner
wants to support some effort level ê (which is derived from this process.)

So, our manager is faced with two decisions. One is to determine how
much effort to provide given he accepts the contract:

maxe{EU(w(Π(e, ρ)), e)}.

This leads to FOC

E [Uw(·, ·)w′(·)Πe(·, ·) + Ue(·, ·)] = 0,

which determines the optimal e∗. The other is the question if to accept the
contract at all, which requires that

maxe{EU(w(Π(e, ρ)), e)} = EU(w(Π(e∗, ρ)), e∗) ≥ U0.

Here U0 is the level of utility the manager can obtain if he does not accept the
contract but instead engages in the next best alternative activity (in other
words, it is the manager’s opportunity cost.)

Both of these have special names and roles in the principal-agent litera-
ture. The latter one is called the participation constraint, or individual
rationality constraint. That is, any contract is constrained by the fact
that the manager must willingly participate in it. Thus, the contract w∗(Π)
must satisfy

IR : maxe{EU(w(Π(e, ρ)), e)} ≥ U0.

The other constraint is that the manager’s optimal choice should, in equilib-
rium, correspond to what the owner wanted the manager to do. That is, if
the owner wants to elicit effort level ê, then it should be true that the man-
ager, in equilibrium, actually supplies that level. This is called the incentive
compatibility constraint. Mathematically it says:

IC : ê = argmaxe{EU(w(Π(e, ρ)), e)}.

Here ‘argmax’ indicates the argument which maximizes. In other words, we
want ê = e∗.
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Now we can write down the principal’s problem. The principal ‘simply’
wishes to maximize his own payoff subject to both, the participation and
incentive compatibility constraints. This problem is easily stated

maxe,w(Π) {E [Π(e, ρ)− w(Π(e, ρ))
+λP (U0 − U(w(Π(e, ρ)), e))
+ λI (Uw(·, ·)w′(·)Πe(·, ·) + Ue(·, ·))]} ,

but hard to solve in general cases. We will, therefore, only look at three
special cases in which some answers are possible.

First, let us simplify by assuming a risk neutral manager. In that case
we can have U(w, e) = w − v(e), where v(e) is the disutility of effort. Now
note that we would not have to insure the manager in this case since he
evaluates expected wealth the same as some fixed payment. Also note that
there is no reason to over pay the manager compared to the outside option,
that is, he needs to be given only U0. Before we charge ahead and solve this
brute force, let us think for a moment longer about the situation. We will
not be insuring the manager. He will furthermore have the correct incentive
to expend effort if he cares as much about profits as the owner. Thus it
would stand to reason that if we were to sell him the profits he would be the
owner and thus take the optimal action! But this is equivalent to paying him
a wage which is equal to the profits less some fixed return for the owners.
So, let us propose a wage contract of w = Π−p, and assume for the moment
that the IR constraint can be satisfied (by choice of the correct p.) With
such a contract the manager will choose an effort level such that

Πe(e, ρ)− v′(e) = 0.

Note that this is the efficient effort level under full information. The owner’s
problem now simply is to choose the largest p such that the manager still
accepts the contract!

The other special case one can consider is that of an infinitely risk-averse
manager. We can model this as a manager who has lexicographic preferences
over his minimum wealth and effort. Independent of the effort levels the
manager will prefer a higher minimum wealth, and for equal minimum wealth
the manager will prefer the lower effort. For simplicity also assume that
the lowest possible profit level is independent of effort (that is, only the
probabilities of profits depend on the effort, not the level). In that case a
manager will always face the same lowest wage for any wage function and
thus will not be able to be enticed to provide more than the minimum level
of effort.
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As you can see, we might expect anything between efficient outcomes
and completely inefficient outcomes, largely depending on the precise situ-
ation. Let us return for a moment to the general setting above. We will
restrict it somewhat by assuming that the manager’s preferences are separa-
ble: U(w, e) = u(w)−v(e) with the obvious assumptions of u′(·) > 0, u′′(·) <
0, v′(·) ≥ 0, v′′(·) > 0, v′(e) = 0, v′(e) = ∞. The last two are typical “Inada
conditions” designed to ensure an interior solution. We will also assume that
the cumulative distribution of profits exists and depends on effort, F (Π, e),
and that this distribution is over Π ∈ [Π, Π], has a density f(Π, e) > 0, and
satisfies first-order stochastic dominance.

In this formulation the manager will solve

maxe

{

∫ Π

Π

u(w(Π))f(Π, e)dΠ− v(e)

}

.

This has first order condition

∫ Π

Π

u(w(Π))fe(Π, e)dΠ− v′(e) = 0.

We will ignore the SOC for a while. The participation constraint will be

∫ Π

Π

u(w(Π))f(Π, e)dΠ− v(e) ≥ U0.

The owner will want to find a wage structure and effort level to

maxw(·),e

{

∫ Π

Π

[(Π− w(Π))f(Π, e)

+λP (u(w(Π))− v(e)− U0)f(Π, e)

+ λC(u(w(Π))fe(Π, e)− v′(e)f(Π, e))] dΠ
}

.

This will have to be differentiated, which is quite messy and, as pointed out
before, hard to solve. However, consider the differentiation with respect to
the wage function:

−f(Π, e) + λP f(Π, e)u′(w(Π)) + λCfe(Π, e)u′(w(Π)) = 0.

Rewriting we get something which is informative:

1

u′(w(Π))
= λP + λC

fe(Π, e)

f(Π, e)
.
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The left hand side of this is the inverse of the slope of the wealth utility
function. It is therefore increasing in the wage. The right hand side consists
of the constraint multipliers (which will both be positive since the constraints
are binding) multiplied by some factors. Of particular interest is the last
term, the ratio of the derivative of the density to the density. Let us further
specialize the problem and suppose that there are only two effort levels, and
that the owner wants to get the high effort level. In that case it is easy to
see that the above equation will become

1

u′(w(Π))
= λP + λC

fH(Π)− fL(Π)

fH(Π)
= λP + λC

(

1− fL(Π)

fH(Π)

)

.

The term fL(Π)
fH(Π)

is called a likelihood ratio. It follows that the higher the
relative probability that the effort was high for a given realized profit level,
the higher the manager’s wage. Indeed, if the likelihood ratio is decreasing
then then the wage function must be increasing with realized profits. What
is going on here is that higher profits are a correct signal of higher effort, and
thus we will make wages increase with the signal.

Finally, assume that there are only two profit levels, with the high level
of profits more likely under high effort. In that case it can be shown that

0 <
wH − wL

ΠH − ΠL

< 1.

When does this principal-agent relationship come into play? We already
mentioned the insurance problem, where the insurer wants to elicit the ap-
propriate amount of care from the insured. It also occurs in politics, where
the electorate would like to insure that the elected officials actually carry out
the electorates’ will (witness the ‘recall’ efforts in BC, presumably designed
to make the wage function steeper, since under the old system any punish-
ment only occurred after 4 years.) In essence a principal-agent relationship
with the attendant problems exists any time there is a delegation of responsi-
bilities with less than perfect monitoring. Most frequently in economics this
is the case in the production process. Owners of firms delegate to managers,
who have superior information about market circumstances, technologies,
etc. Managers in turn delegate to subordinates — who often have superior
information about the details of the production process. (Do quality prob-
lems arise inherently from the production process employed, or are they due
to negligent work?) Any time a firm subcontracts another firm there is an-
other principal-agent relationship set up. Indeed, even in our class there are
multiple principal-agent relationships. The university wants to ensure that
I treat you appropriately, teach the appropriate material, and teach “well”.
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You, in some sense, are the principal of the university, having similar goals.
However, you inherently do not know what it is you “ought” to be taught.
You may also have no way to determine if you are taught well — especially
since there is a potential conflict between your future self (desiring rigorous
instruction) and your current self (desiring a ‘pleasant’ course.) There are
various incentive systems in place to attempt to address these problems, and
heated debate about how successful they are!

As an aside: the principal-agent problems arising from delegation are of-
ten held responsible for limits on firm size (i.e., are taken to cause decreasing
returns to scale.)
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Chapter 6

Game Theory

Most of the models you have encountered so far had one distinguishing fea-
ture: the economic agent, be it firm or consumer, faced a simple decision
problem. Aside from the discussion of oligopoly, where the notion that one
firm may react to another’s actions was mentioned, none of our decision mak-
ers had to take into account other’s decisions. For the price taking firm or
consumer prices are fixed no matter what the consumer decides to do. Even
for the monopolist, where prices are not fixed, the (inverse) demand curve is
fixed. These models therefore can be treated as maximization problems in
the presence of an (exogenous) constraint.

Only when duopoly was introduced did we need to discuss what, if any,
effect one firm’s actions might have on the other firm’s actions. Usually this
problem is avoided in the analysis of the problem, however. For example,
in the standard Cournot model we suppose a fixed market demand schedule
and then determine one firm’s optimal (profit maximizing) output under the
assumption that the other firm produces some fixed output. By doing this
we get the optimal output for each possible output level by the other firm
(called reaction function) for each firm.1 It then is argued that each firm must
correctly forecast the opponent’s output level, that is, that in equilibrium
each firm is on its reaction function. This determines the equilibrium output
level for both firms (and hence the market price).2

1So, suppose two fixed marginal cost technology firms, and that inverse market demand
is p = A−BQ. Each firm i then solves maxqi

{(A−B(qi + q−i))qi − ciqi} which has FOC
A−Bq−i−2Bqi−ci = 0 and thus the optimal output level is qi = (A−ci)(2B)−1−0.5q−i.

2To continue the above example: q1 = (A−c1)(2B)−1−0.5((A−c2)(2B)−1−0.5q1) −→
q1 = (A− 2c1 + c2)(3B)−1. Thus q2 = (A− 2c1 + c2)(3B)−1 and p = (A + c1 + c2)(3)

−1.

113
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In this kind of analysis we studiously avoid allowing a firm to consider
an opponent’s actions as somehow dependent on its own. Yet, we could easily
incorporate this kind of thinking into our model. We could not only call it a
reaction function, but actually consider it a reaction of some sort. Doing so
requires us to think about (or model) the reactions to reactions, etc.. Game
theory is the term given to such models. The object of game theory is the
analysis of strategic decision problems — situations where

• The outcome depends on the decisions of multiple (n ≥ 2) decision
makers, such that the outcome is not determined unilaterally;

• Everybody is aware of the above fact;

• Everybody assumes that everybody else conforms to fact 2;

• Everybody takes all these facts into account when formulating a course
of action.

These points especially interesting if there exists a conflict of interest
or a coordination problem. In the first case, any payoff gains to one player
imply payoff losses to another. In the second case, both players’ payoffs rise
and fall together, but they cannot agree beforehand on which action to take.
Game theory provides a formal language for addressing such situations.

There are two major branches in game theory — Cooperative game
theory and Non-cooperative game theory. They differ in their approach,
assumptions, and solution concepts. Cooperative game theory is the most
removed from the actual physical situation/game at hand. The basis of anal-
ysis is the set of feasible payoffs, and the payoffs players can obtain by not
participating in the first place. Based upon this, and without any knowledge
about the underlying rules, certain properties which it is thought the solution
ought to satisfy are postulated — so called axioms. Based upon these axioms
the set of points which satisfy them are found. This set may be empty —
in which case the axioms are not compatible (for example Arrow’s Impossi-
bility Theorem) — have one member, or have many members. The search
is on for the fewest axioms which lead to a unique solution, and which have
a “natural” interpretation, although that is often a more mathematical than
economic metric. One of the skills needed for this line of work is a pretty
solid foundation in functional analysis — a branch of mathematics concerned
with properties of functions. We will not talk much about this type of game
theory in this course, although it will pop up once later, when we talk about
bargaining (in the Nash Bargaining Solution). As a final note on this sub-
ject: this type of game theory is called “cooperative” not necessarily because
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players will cooperate, but since it is assumed that players’ commitments
(threats, promises, agreements) are binding and can be enforced. Concepts
such as the Core of an exchange economy3 or the Nash bargaining solution
are all cooperative game theory notions.

In this chapter we will deal exclusively with non-cooperative game the-
ory. In this branch the focus is more on the actual rules of the game — it is
thus a useful tool in the analysis of how the rules affect the outcome. Indeed,
in the mechanism design and the implementation literature researchers ba-
sically design games in order to achieve certain outcomes. Non-cooperative
game theory can be applied to games in two broad categories differing with
respect to the detail employed in modelling the situation at hand (in fact,
there are many ways in which one can categorize games; by the number of
players, the information possessed by them, or the question if there is room
for cooperation or not, among others.) The most detailed branch employs the
extensive form, while a more abstracted approach employs the strategic
form.

While we are ultimately concerned with economic problems, much of
what we do in the next pages deals with toy examples. Part of the reason for
the name game theory is the similarity of many strategic decision problems to
games. There are certain essential features which many economic situations
have in common with certain games, and a study of the simplified game
is thus useful preparation for the study of the economic situation. Some
recurring examples of particular games are the following (you will see that
many of these games have names attached to them which are used by all
researchers to describe situations of that kind.)

Matching Pennies: 2 players simultaneously4 announce Head or Tails. If
the announcements match, then player 2 pays player 1 one dollar; if they

3The ‘Core’ refers to the set of all Pareto Optimal allocations for which each
player/trader achieves at least the same level of utility as in the original allocation. For
a two player exchange economy it is the part of the Contract Curve which lies inside the
trading lens. The argument is that any trade, since it is voluntary, must improve each
player at least weakly, and that two rational players should not stop trading until all gains
from trade are exhausted. The result follows from this. It is not more specific, since we
do not know the trading procedures. A celebrated result in economics (due to Edgeworth)
is that the core converges to the competitive equilibrium allocation as the economy be-
comes large (i.e., players are added, so that the number of players grows to infinity.) This
demonstrates nicely that in a large economy no one trader has sufficient market power to
influence the market price.

4This means that no information is or can be transmitted. It does not necessarily mean
actually simultaneous actions. While simultaneousness is certainly one way to achieve the
goal, the players could be in different rooms without telephones or shared walls.
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do not match, then player 1 pays player 2 one dollar. This is an example
of a zero-sum game, the focus of much early game theoretic analysis. The
distinguishing feature is that what is good for one is necessarily bad for the
other player. The game is one of pure conflict. It is also a game of incomplete
information.

Battle of the Sexes: Romeo and Juliet rather share an activity than not.
However, Romeo likes music better than sports while Juliet likes sports better
than music. They have to choose an activity without being able to commu-
nicate with each other. This game is a coordination game — the players
want to coordinate their activities, since that increases their payoffs. There
is some conflict, however, since each player prefers coordination on a different
activity.

Prisoners’ Dilemma: Probably one of the most famous (and abused)
games, it captures the situation in which two players have to choose to co-
operate or not (called ‘defect’) simultaneously. One form is that both have
to announce one of two statements, either “give the other player $3000” or
“give me $1000.” The distinguishing feature of this game is that each player
is better off by not cooperating — independently of what the other player
does — but as a group they would be better off if both cooperated. This is a
frequent problem in economics (for example in duopolies, where we will use
it later.)

“Punishment Game:” This is not a standard name or game. I will use
it to get some ideas across, however, so it might as well get a name. It is a
game with sequential moves and perfect information: first the child chooses
to either behave or not. Based on the observation of the behaviour, the
parents then decide to either punish the child, or not. The child prefers not
to behave, but punishment reduces its utility. The parents prefer if the child
behaves, but dislike punishing it.

There are many other examples which we will encounter during the
remainder of the course. There are repeated games, where the same so
called stage game is repeated over and over. While the stage game may be a
simultaneous move game, such as the Prisoners’ Dilemma, after each round
the players get to observe either payoffs or actual actions in the preceding
stage. This allows them to condition their play on the opponents’ play in
the past (a key mechanism by which cooperation and suitable behaviour is
enforced in most societies.)
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6.1 Descriptions of Strategic Decision Prob-

lems

6.1.1 The Extensive Form

We will start rather formally. In what follows we will use the correct and
formal way to define games and you will therefore not have to reformalize
some foggy notions later on — the down side is that this may be a bit unclear
on first reading. Much of it is only jargon, however, so don’t be put off!

The first task in writing down a game is to give a complete description of
the players, their possible actions, the timing of these actions, the information
available to the players when they take the actions, and of course the payoffs
they receive in the end. This information is summarized in a game tree.

Now, a game tree has to satisfy certain conditions in order to be sensible: It
has to be finite (otherwise, how would you write it down?), and it has to be
connected (so that we can get from one part of the tree to another), and it
has to be like a tree in that we do not have loops in it, where two branches
join up again.5 All this is formally said in the following way:

Definition 1 A game tree Γ (also called a topological tree) is a finite col-
lection of nodes, called vertices, connected by lines, called arcs, so as to
form a figure which is connected (there exists a set of arcs connecting any
one vertex to any other) and contains no simple closed curves (there does not
exist a set of arcs connecting a vertex to itself.)

In Figure 6.1 A, B, and C satisfy the definition, D, E, and F do not.

We also need a sense of where the game starts and where it ends up.
We will call the start of the game the distinguished node/vertex or more
commonly the root. We can then define the following:

Definition 2 Let Γ be a tree with root A. Vertex C follows vertex B if
the sequence of arcs connecting A to C passes through B. C follows B
immediately if C follows B and there is one arc connecting C to B. A
vertex is called terminal if it has no followers.

5Finite can be dropped. Indeed we will consider infinite games, such as the Cournot
duopoly game where each player has infinitely many choices. The formalism to this ex-
tension is left to more advanced courses and texts.
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Figure 6.1: Examples of valid and invalid trees

We are now ready to define a game formally by defining a bunch of
objects and a game tree to which they apply. These objects and the tree will
capture all the information we need. What is this information? We need the
number of players, the order of play, i.e., which player plays after/together
with what other player(s), what each player knows when making a move,
what the possible moves are at each stage, what, if any, exogenous moves
exist, and what the probability distribution over them is, and of course the
payoffs at the end. So, formally, we get the following:

Definition 3 A n-player game in extensive form comprises:

1. A game tree Γ with root A;

2. A function, called payoff function, associating a vector of length n
with each terminal vertex of Γ;

3. A partition {S0, S1, . . . , Sn} of the set of nonterminal nodes of Γ (the
player sets;)

4. For each vertex in S0 a probability distribution over the set of immediate
followers;

5. for each i ∈ {1, 2, . . . , n} a partition of Si into subsets Sj
i (informa-

tion sets), such that ∀B,C ∈ Sj
i , B and C have the same number of

immediate followers;

6. for each Sj
i an index set Ij

i and a 1-1 map from I j
i to the set of

immediate followers of each vertex in Sj
i .
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This is a rather exhaustive list. Notice in particular the following: (1) While
the game is for n players, we have (n + 1) player sets. The reason is that
“nature” gets a player set too. Nature will be a very useful concept. It
allows us to model a non-strategic choice by the environment, most often the
outcome of some randomization (as when there either is an accident or not,
but none of the players is choosing this.) (2) Nature, since it is non-strategic,
does not have a payoff in the game, and it does not have any information sets.
(3) Our information sets capture the idea that a player can not distinguish
the nodes within them, since every node has the same number of possible
moves and they are the same (i.e., their labels are the same.)

Even with all the restrictions already implied, there are still various
ways one could draw such a game. Two very important issues deal with
assumptions on information — properties of the information sets, in other
words. The first is a restriction on information sets which will capture the
idea that players do not forget any information they learn during the game.

Definition 4 A n-person game in extensive form is said to be a game of
perfect recall if all players never forget information once known, and if
they never forget any of their own previous moves: i.e., if x, x′ ∈ Sj

i then
neither x nor x′ is a predecessor of the other one, and if x̂ is a predecessor
of x and the same player moves at x and x̂ (i.e., x̂, x ∈ Si), then there exists
some x̃ in the same Sj

i as x̂ which is a predecessor of x′, and which has the
same index on the arc leading to x′ as that from x̂ to x.

This definition bears close reading, but is quite intuitive in practice: if two
nodes are in a player’s information set, then one cannot follow the other —
else the player in effect forgets that he himself moved previously in order to
get to the current situation. Furthermore, there is a restriction on predeces-
sors: it must be true that either both nodes have the same predecessor in
a previous information set of this player, or if not, that “the same action”
was chosen at the two different predecessor nodes. Otherwise, the player
should remember the index he chose previously and thus the current two
nodes cannot be indistinguishable.

We will always assume perfect recall. In other words, all our players will
recall all their own previous moves, and if they have learned something about
their opponents (such as that the opponent took move “Up” the second time
he moved) then they will not forget it. In practice, this means that players
learn something during the game, in some sense.

Games of perfect recall still allow for the possibility of players not know-
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Figure 6.2: A Game of Perfect Recall and a Counter-example

ing something about the past of the game — for example in games where
players move simultaneously, a player would not know his opponent’s move
at that time. Such games are called games of imperfect information. The
opposite is a game of perfect information:

Definition 5 A n-person game in extensive form is said to be a game of
perfect information if all information sets are singletons.

It is important to note a crucial linguistic difference here: Games of
Incomplete Information are not the same as games of Imperfect Infor-
mation. Incomplete information refers to the case when some feature of the
extensive form is not known to one (or more) of the players. For example the
player may not know the payoff function, or even some of the possible moves,
or their order. In that case, the player could not write down the extensive
form at all! In the case of imperfect information the player can write down
the extensive form, but it contains non-trivial information sets.

A famous theorem due to Harsanyi shows that it is possible to trans-
form a situation of incomplete information to one of imperfect information if
players are Bayesian.6 In that case, uncertainty about the number of players,

6By this we mean that they use Bayes’ formula to update their beliefs. Bayes’ formula
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Figure 6.3: From Incomplete to Imperfect Information

available moves, outcomes, etc., can be transformed into uncertainty about
payoffs only. From that, one can construct a complete information game
with imperfect information, and the equilibria of these games will coincide.
For example, take the case of a market entrant who does not know if the mo-
nopolist enjoys fighting an entrant, or not. The entrant thus does not know
the payoffs of the game. However, suppose it is known that there are two
types of monopolist, one that enjoys a fight, and one that does not. Nature
is assumed to choose which one is actually playing, and the probability of
that choice is set to coincide with the entrant’s priors.7 After this transfor-
mation we have a well specified game and can give the extensive form — as
in Figure 6.3. This turns out to be one of the more powerful results, since it
makes our tools very useful to lots of situations. If we could not transform
incomplete information into imperfect information, then we could not model
most interesting situations — which nearly all have some information that
players don’t know.

6.1.2 Strategies and the Strategic Form

In order to analyze the situation modelled by the extensive form, we employ
the concept of strategies. These are complete, contingent plans of behaviour
in the game, not just a “move,” which refers to the action taken at any
particular information set. You should think of a strategy as a complete
game plan, which could be given to a referee or a computer, and they would
then play the game for you according to these instructions, while you just

says that the probability of an event A occurring given that an event B has occurred will
be the probability of the event A occurring times the probability of B happening when A
does, all divided by the probability of B occurring:

P (A|B) =
P (A ∩B)

P (B)
=

P (B|A)P (A)

P (B)
.

7A prior is the ex-ante belief of a player. The ex-post probability is called a posterior.
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watch what happens and have no possibility to change your mind during the
actual play of the game. This is a very important point. The players have
to submit a complete plan before they start the game, and it has to cover
all eventualities — which translates into saying that the plan has to specify
moves for all information sets of the player, even those which prior moves of
the same player rule out!

Definition 6 A pure strategy for player i ∈ {1, 2, . . . , n} is a function σi

that associates every information set Sj
i with one element of the index set I j

i ,
σi : Sj

i 7→ Ij
i .

Alternatively, we can allow the player to randomize.8 This randomiza-
tion can occur on two levels, at the level of each information set, or at the
level of pure strategies:

Definition 7 A behavioural strategy for player i ∈ {1, 2, . . . , n} is a
function βi that associates every information set Sj

i with a probability distri-
bution over the elements of the index set I j

i .

Definition 8 A mixed strategy µi for player i ∈ {1, 2, . . . , n} is a proba-
bility distribution over the pure strategies σi ∈ Σi.

Notice that these are not the same concepts, in general. However, under
perfect recall one can find a behavioural strategy corresponding to each mixed
strategy, and so we will only deal with mixed strategies (which are more
properly associated with the strategic form, which we will introduce shortly.)
Mixed strategies are also decidedly easier to work with.

We can now consider what players’ payoffs from a game are. Consider
pure strategies only, for now. Each player has pure strategy σi, giving rise to
a strategy vector σ = (σ1, σ2, . . . , σn) = (σi, σ−i). In general, σ does not de-
termine the outcome fully, however, since there may be moves by nature. We

8This is a somewhat controversial issue. Do people flip coins when making decisions?
Nevertheless it is pretty much generally accepted. In some circumstances randomization
can be seen as a formal equivalent of bluffing: Take Poker for example. Sometimes you
fold with a pair, sometimes you stand, sometimes you even raise people. This could be
modelled as a coin flip. In other instances the randomizing distribution is explained by
saying that while each person plays some definite strategy, a population may not, and the
randomization probabilities just correspond to the proportion of people in the population
who play that strategy. We will not worry about it, however, and assume randomization
as necessary (and sometimes it is, as we will see!)
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therefore use von Neumann-Morgenstern expected utility to evaluate things.
In general, the payoffs players receive from a strategy combination (vector)
are therefore expected payoffs. In the end, players will, of course, arrive at
precisely one terminal vertex and receive whatever the payoff vector is at that
terminal vertex. Before the game is played, however, the presence of nature
or the use of mixed strategies implies a probability distribution over termi-
nal vertices, and the game and strategies are thus evaluated using expected
payoffs. Define the following:

Definition 9 The expected payoff of player i given σ = (σi, σ−i), is πi(σ).
The vector of expected payoffs for all players is π(σ) = (π1(σ), . . . , πn(σ)).

Definition 10 The function π(σ) associated with the n-person game Γ in
extensive form is called the strategic form associated with Γ. (It is also
known as the “normal form,” but that language is coming out of use.)

We will treat the strategic form in this fashion — as an abbreviated
representation of the sometimes cumbersome extensive form. This is the
prevalent view nowadays, and this interpretation is stressed by the term
“strategic form.” There is a slightly different viewpoint, however, since so-
called matrix-games where actually analyzed first. Thus, one can also see
the following definition:

Definition 11 A game G in strategic (normal) form is a 3-tuple (N,S, U),
where N is the player set {1, . . . , n}, S is the strategy set S = S1×S2 . . .×Sn,
where Si is player i’s strategy set, and U is the payoff function U : S 7→ Rn;
and a set of rules of the game, which are implicit in the above.

This is a much more abstract viewpoint, where information is not only
suppressed, but not even mentioned, in general. The strategic form can be
represented by a matrix (hence the name matrix games.) Player 1 is taken
to choose the row, player 2 the column, and a third player would be choosing
among matrices. (For more than three players this representation clearly
looses some of its appeal.) Figure 6.4 provides an example of a three player
game in strategic form.

A related concept, which is even more abstract, is that of a game form.
Here, only outcomes are specified, not payoffs. To get a game we need a set
of utility functions for the players.
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Matrix A ←− Player 3 −→ Matrix B

1\2 L R C

U (1, 1, 1) (2, 1, 2) (1, 3, 2)

C (1, 2, 1) (1, 1, 1) (2, 3, 3)

D (2, 1, 2) (1, 1, 3) (3, 1, 1)

1\2 L R C

U (1, 1, 2) (2, 1, 3) (1, 3, 1)

C (1, 2, 2) (1, 1, 0) (2, 3, 4)

D (2, 1, 0) (1, 1, 5) (3, 1, 2)

Figure 6.4: A Matrix game — game in strategic form

Definition 12 A game form is a 3-tuple (N,S,O) where N and S are as
defined previously and O is the set of physical outcomes.

You may note a couple of things at this point. For one, different exten-
sive form games can give rise to the same strategic form. The games may
not even be closely related for this to occur. In principle, realizing that the
indices in the index sets are arbitrary, and that we can relabel everything
without loss of generality (does it matter if we call a move “UP” or “OP-
TION 1”?), any extensive form game with, say, eight strategies for a player
will lead to a matrix with eight entries for that player. But we could have
one information set with eight moves, or we could have three information sets
with two moves each. We could also have two information sets, one with four
moves, one with two. The extensive forms would thus be widely different,
and the games would be very different indeed. Nevertheless, they could all
give rise to the same matrix. Does this matter? We will have more to say
about this later, when we talk about solution concepts. The main problem
is that one might want all games that give rise to the same strategic form to
have the same solution — which often they don’t. What is “natural” in one
game may not be “natural” in another.

The second point concerns the fact that the strategic form is not always
a more convenient representation. Figure 6.5 gives an example.

This is a simple bargaining game, where the first player announces if
he wants 0, 50 or 100 dollars, then the second player does the same. If the
announcements add to $100 or less the players each get what they asked for,
if not, they each pay one dollar. While the extensive form is simple, the
strategic form of this game is a 3× 27 matrix!9

9Why? Since a strategy for the second player is an announcement after each announce-
ment by the first player it is a 3-tuple. For each of the elements there are three possible
moves, so that there are 33 different vectors that can be constructed.
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1\2 (0, 0, 0) (0, 0, 50) . . . (100, 100, 100)

0 (0, 0) (0, 0) . . . (0, 100)

50 (50, 0) (50, 0) . . . (−1,−1)

100 (100, 0) (−1,−1) . . . (−1,−1)
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Figure 6.5: A simple Bargaining Game

Before we go on, Figure 6.6 below and on the next page gives the four
games listed in the beginning in both their extensive and strategic forms.
Note that I am following the usual convention that in a matrix the first
payoff belongs to the row player, while in an extensive form payoffs are listed
by index.

Matching Pennies

1\2 H T

H (1,−1) (−1, 1)

T (−1, 1) (1,−1)

Battle of the Sexes

1\2 M S

M (50, 30) (5, 5)

S (1, 1) (30, 50)

Prisoners’ Dilemma

1\2 C D

C (3, 3) (0, 4)

D (4, 0) (1, 1)
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The “Education Game”
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Figure 6.6: The 4 standard games

6.2 Solution Concepts for Strategic Decision

Problems

We have developed two descriptions of strategic decision problems (“games”.)
How do we now make a prediction as to the “likely” outcome of this?10

We will employ a solution concept to “solve” the game. In the same
way in which we impose certain conditions in perfect competition (such as,
“markets clear”) which in essence say that the equilibrium is a situation
where everybody is able to carry out their planned actions (in that case, buy
and sell as much as they desire at the equilibrium price), we will impose
conditions on the strategies of players (their planned actions in a game).
Any combination of strategies which satisfy these conditions will be called an
equilibrium. Since there are many different conditions one could impose, the
equilibrium is usually qualified by a name, such as “these strategies constitute
a Nash equilibrium (Bayes Nash equilibrium, perfect equilibrium, subgame
perfect equilibrium, the Cho-Kreps criterion,...) The equilibrium outcome is
determined by the equilibrium strategies (and moves by nature.) In general,
you will have to get used to the notion that there are many equilibrium
outcomes for a game. Indeed, in general there are many equilibria for one
game. This is part of the reason for the many equilibrium concepts, which
try to “refine away” (lingo for “discard”) outcomes which do not appear to
be sensible. There are about 280 different solution concepts — so we will
only deal with a select few which have gained wide acceptance and are easy
to work with (some of the others are difficult to apply to any given game.)

10It is sometimes not quite clear what we are trying to do: tell players how they should
play, or determine how they will play. There are some very interesting philosophical issues
at stake here, for a discussion of which we have neither the time nor the inclination!
However, let it be noted here that the view taken in this manual is that we are interested
in prediction only, and do not care one iota if players actually determine their actions in
the way we have modeled.
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6.2.1 Equilibrium Concepts for the Strategic Form

We will start with equilibrium concepts for the strategic form. The first
is a very persuasive idea, which is quite old: Why don’t we eliminate a
strategy of a player which is strictly worse than all his other strategies no
matter what his opponents do? This is known as Elimination of (Strictly)
Dominated Strategies. We will not formally define this since there are
various variants which use this idea (iterated elimination or not, of weakly
or strictly dominated strategies), but the general principle should be clear
from the above. What we will do, is to define what we mean by a dominated
strategy.

Definition 13 Strategy a strictly dominates strategy b if the payoff to the
player is larger under a, independent of the opponents’ strategies:

a strictly dominates b if πi(a, s−i) > πi(b, s−i) ∀s−i ∈ S−i.

A similar definition can be made for weakly dominates if the strict in-
equality is replaced by a weak inequality. Other authors use the notion of a
dominated strategy instead:

Definition 14 Strategy a is is weakly (strictly) dominated if there exists
a mixed strategy α such that πi(α, s−i) ≥ (>)πi(a, s−i), ∀s−i ∈ Σi and
πi(α, s−i) > πi(a, s−i) for some s−i ∈ Σi.

If we have a 2× 2 game, then elimination of dominated strategies may
narrow down our outcomes to one point. Consider the “Prisoners’ Dilemma”
game, for instance. ‘Defect’ strictly dominates ‘Cooperate’ for both players,
so we would expect both to defect. On the other hand, in “Battle of the
Sexes” there is no dominated (dominating) strategy, and we would still not
know what to predict. If a player has more than two strategies, we also do
not narrow down the field much, even if there are dominated strategies. In
that case, we can use Successive Elimination of Dominated Strategies,
where we start with one player, then go to the other player, back to the first,
and so on, until we can’t eliminate anything. For example, in the following
game

1\2 (l, l) (r, r) (l, r) (r, l)

L (2, 0) (2,−1) (2, 0) (2,−1)

R (1, 0) (3, 1) (3, 1) (1, 0)
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player 1 does not have a dominated strategy. Player 2 does, however, since
(r, l) is strictly dominated by (l, r). If we also eliminate weakly dominated
strategies, we can throw out (l, l) and (r, r) too, and then player 1 has a
dominated strategy in L. So we would predict, after successive elimination
of weakly dominated strategies, that the outcome of this game is (R, (l, r)).

There are some criticisms about this equilibrium concept, apart from
the fact that it may not allow any predictions. These are particularly strong
if one eliminates weakly dominated strategies, for which the argument that
a player should never choose those appears weak. For example you might
know that the opponent will play that strategy for which you are indifferent
between two strategies. Why then would you eliminate one of these strategies
just because somewhere else in the game (where you will not be) one is worse
than the other?

Next, we will discuss the probably most widely used equilibrium concept
ever, Nash equilibrium.11 This is the most universally accepted concept,
but it is also quite weak. All other concepts we will see are refinements of
Nash, imposing additional constraints to those imposed by Nash equilibrium.

Definition 15 A Nash equilibrium in pure strategies is a set of strate-
gies, one for each player, such that each player’s strategy maximizes that
player’s payoff, taking the other players’ strategies as given:

σ∗ is Nash iff ∀i,∀σi ∈ Σi, πi(σ
∗
i , σ

∗
−i) ≥ πi(σi, σ

∗
−i).

Note that the crucial feature of this equilibrium concept: each player takes
the others’ actions as given and plays a best response to them. This is
the mutual best response property we first saw in the Cournot equilibrium,
which we can now recognize as a Nash equilibrium.12 Put differently, we
only check against deviations by one player at a time. We do not consider
mutual deviations! So in the Prisoners’ Dilemma game we see that one player
alone cannot gain from a deviation from the Nash equilibrium strategies

11Nash received the Nobel price for economics in 1994 for this contribution. He extended
the idea of mutual best responses proposed by von Neumann and Morgenstern to n players.
He did this in his Ph.D. thesis. von Neumann and Morgenstern had thought this problem
too hard when they proposed it in their book Games and Economic Behaviour.

12Formally we now have 2 players. Their strategies are qi ∈ [0, P−1(0)]. Restricting
attention to pure strategies, their payoff functions are πi(q1, q2), so the strategic form
is (π1(q), π2(q)). Denote by bi(q−i) the best response function we derived in footnote 1
of this chapter. The Nash equilibrium for this game is the strategy vector (q∗1, q∗2) =
(b1(q∗2), b2(q∗1)). This, of course, is just the computation performed in footnote 2.
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(Defect,Defect). We do not allow or consider agreements by both players to
defect to (Cooperate,Cooperate), which would be better!

A Nash equilibrium in pure strategies may not exist, however. Consider,
for example, the “Matching Pennies” game: If player 2 plays ‘H’ player 1
wants to play ‘H’, but given that, player 2 would like ‘T’, but given that
1 would like ‘T’, ... We may need mixed strategies to be able to have a
Nash equilibrium. The definition for a mixed strategy Nash equilibrium is
analogous to the one above and will not be repeated. All that changes is
the definition of the strategy space. Since an equilibrium concept which
may fail to give an answer is not that useful (hence the general disregard for
elimination of dominated strategies) we will consider the question of existence
next.

Theorem 1 A Nash equilibrium in pure strategies exists for perfect infor-
mation games.

Theorem 2 For finite games a Nash equilibrium exists (possibly in mixed
strategies.)

Theorem 3 For (N,S, U) with S ∈ Rn compact and convex and Ui : S 7→ R
continuous and strictly quasi concave in si, a Nash equilibrium exists.

Remarks:

1. Nash equilibrium is a form of rational expectations equilibrium (ac-
tually, a rational expectations equilibrium is a Nash equilibrium, for-
mally.) As in a rational expectations equilibrium, the players can be
seen to “expect” their opponent(s) to play certain strategies, and in
equilibrium the opponents actually do, so that the expectation was
justified.

2. There is an apparent contradiction between the first existence theorem
and the fact that Nash equilibrium is defined on the strategic form.
However, you may want to think about the way in which assuming
perfect information restricts the strategic form so that matrices like
the one for matching pennies can not occur.

3. If a player is to mix over some set of pure strategies {σ1
i , σ

2
i , . . . , σ

k
i }

in Nash equilibrium, then all the pure strategies in the set must lead



130 L-A. Busch, Microeconomics May2004

to the same expected payoff (else the player could increase his payoff
from the mixed strategy by changing the distribution.) This in turn
implies that the fact that a player is to mix in equilibrium will impose
a restriction on the other players’ strategies! For example, consider the
matching pennies game:

1\2 H T

H (1,−1) (−1, 1)

T (−1, 1) (1,−1)

For player 1 to mix we will need that π1(H,µ2) = π1(T, µ2). If β denotes
the probability of player 2 playing H, then we need that β− (1− β) =
−β + (1− β), or 2β − 1 = 1− 2β, in other words, β = 1/2. For player
1 to mix, player 2 must mix at a ratio of 1/2 : 1/2. Otherwise, player
1 will play a pure strategy. But now player 2 must mix. For him to
mix (the game is symmetric) we need that player 1 mixes also at a
ratio of 1/2 : 1/2. We have, by the way, just found the unique Nash
equilibrium of this game. There is no pure strategy Nash, and if there
is to be a mixed strategy Nash, then it must be this. (Notice that we
know there is a mixed strategy Nash, since this is a finite game!)

The next equilibrium concept we mention is Bayesian Nash Equi-
librium (BNE). This will be for completeness sake only, since we will in
practice be able to use Nash Equilibrium. BNE concerns games of incom-
plete information, which, as we have seen already, can be modelled as games
of imperfect information. The way this is done is by introducing “types” of
one (or more) player(s). The type of a player summarizes all information
which is not public (common) knowledge. It is assumed that each type actu-
ally knows which type he is. It is common knowledge what distribution the
types are drawn from. In other words, the player in question knows who he
is and what his payoffs are, but opponents only know the distribution over
the various types which are possible, and do not observe the actual type of
their opponents (that is, do not know the actual payoff vectors, but only
their own payoffs.) Nature is assumed to choose types. In such a game,
players’ expected payoffs will be contingent on the actual types who play the
game, i.e., we need to consider π(σi, σ−i|ti, t−i), where t is the vector of type
realizations (potentially one for each player.) This implies that each player
type will have a strategy, so that player i of type ti will have strategy σi(ti).
We then get the following:
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Definition 16 A Bayesian Nash Equilibrium is a set of type contingent
strategies σ∗(t) = (σ∗

i (t1), . . . , σ
∗
n(tn)) such that each player maximizes his ex-

pected utility contingent on his type, taking other players’ strategies as given,
and using the priors in computing the expectation:

πi(σ
∗
i (ti), σ

∗
−i|ti) ≥ πi(σi(ti), σ

∗
−i|ti), ∀σi(ti) 6= σ∗

i (ti), ∀i, ∀ti ∈ Ti.

What is the difference to Nash Equilibrium? The strategies in a Nash equi-
librium are not conditional on type: each player formulates a plan of action
before he knows his own type. In the Bayesian equilibrium, in contrast, each
player knows his type when choosing a strategy. Luckily the following is true:

Theorem 4 Let G be an incomplete information game and let G∗ be the
complete information game of imperfect information that is Bayes equivalent:
Then σ∗ is a Bayes Nash equilibrium of the normal form of G if and only if
it is a Nash equilibrium of the normal form of G∗.

The reason for this result is straight forward: If I am to optimize the
expected value of something given the probability distribution over my types
and I can condition on my types, then I must be choosing the same as if I
wait for my type to be realized and maximize then. After all, the expected
value is just a weighted sum (hence linear) of the conditional on type payoffs,
which I maximize in the second case.

6.2.2 Equilibrium Refinements for the Strategic Form

So how does Nash equilibrium do in giving predictions? The good news is
that, as we have seen, the existence of a Nash equilibrium is assured for a wide
variety of games.13 The bad news is that we may get too many equilibria, and
that some of the strategies or outcomes make little sense from a “common
sense” perspective. We will deal with the first issue first. Consider the
following game, which is a variant of the Battle of the Sexes game:

13One important game for which there is no Nash equilibrium is Bertrand competition
between 2 firms with different marginal costs. The payoff function for firm 1, say, is

π1(p1, p2) =

{

(p1 − c1)Q(p1) if p1 < p2

α(p1 − c1)Q(p1) if p1 = p2

0 otherwise

which is not continuous in p2 and hence Theorem 3 does not apply.



132 L-A. Busch, Microeconomics May2004

1\2 M S

M (6, 2) (0, 0)

S (0, 0) (2, 6)

This game has three Nash equilibria. Two are in pure strategies — (M,M)
and (S, S) — and one is a mixed strategy equilibrium where µ1(S) = 1/4 and
µ2(S) = 3/4. So what will happen? (Notice another interesting point about
mixed strategies here: The expected payoff vector in the mixed strategy
equilibrium is (3/2, 3/2), but any of the four possible outcomes can occur in
the end, and the actual payoff vector can be any of the three vectors in the
game.)

The problem of too many equilibria gave rise to refinements, which
basically refers to additional conditions which will be imposed on top of
standard Nash. Most of these refinements are actually applied to the exten-
sive form (since one can then impose restrictions on how information must
be consistent, and so on.) However, there is one common refinement on the
strategic form which is sometimes useful.

Definition 17 A dominant strategy equilibrium is a Nash equilibrium
in which each player’s strategy choice (weakly) dominates any other strategy
of that player.

You may notice a small problem with this: It may not exist! For example,
in the game above there are no dominating strategies, so that the set of
dominant strategy equilibria is empty. If such an equilibrium does exist, it
may be quite compelling, however.

There is another commonly used concept, that of normal form perfect
equilibrium. We will not use this much, since a similar perfection criterion
on the extensive form is more useful for what we want to do later. However,
it is included here for completeness. Basically, normal form perfect will
refine away some equilibria which are “knife edge cases.” The problem with
Nash is that one takes strategies of the opponents as given, and can then be
indifferent between one’s own strategies. Normal form perfect eliminates this
by forcing one to consider completely mixed strategies, and only allowing pure
strategies that survive after the limit of these completely mixed strategies is
taken. This eliminates many of the equilibria which are only brought about
by indifference. We first define an “approximate” equilibrium for completely
mixed games, then take the limit:
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Definition 18 A completely mixed strategy for player i is one that at-
taches positive probability to every pure strategy of player i: µi(si) > 0 ∀si ∈
Si.

Definition 19 A n-tuple µ(ε) = (µ1, . . . , µn) is an ε-perfect equilibrium
of the normal form game G if µi is completely mixed for all i ∈ {1, . . . , n},
and if

µi(sj) ≤ ε if πi(sj, µ−i) ≤ πi(sk, µ−i), sk 6= sj, ε > 0.

Notice that this restriction implies that any strategies which are a poor
choice, in the sense of having lower payoffs than other strategies, must be
used very seldom. We can then take the limit as “seldom” becomes “never:”

Definition 20 A Perfect Equilibrium is the limit point of an ε-perfect
equilibrium as ε→ 0.

To see how this works, consider the following game:

1\2 T B

t (100, 0) (−50,−50)

b (100, 0) (100, 0)

The pure strategy Nash equilibria of this game are (t, T ), (b, B), and (b, T ).
The unique normal form perfect equilibrium is (b, T ). This can easily be seen
from the following considerations. Let α denote the probability with which
player 1 plays t, and let β denote the probability with which player 2 plays
T . 2’s payoff from T is zero independent of α. 2’s payoff from B is −50α,
which is less than zero as long as α > 0. So, in the ε-perfect equilibrium we
have to set (1− β) < ε, that is β > 1− ε in any ε-perfect equilibrium. Now
consider player 1. His payoff from t will be 150β−50, while his payoff from b
is 100. His payoff from t is therefore less than from b for all β, and we require
that α < ε. As ε→ 0, both α and (1− β) thus approach zero, and we have
(b, T ) as the unique perfect equilibrium.

While the payoffs are the same in the perfect equilibrium and all the
Nash equilibria, the perfect equilibrium is in some sense more stable. Notice
in particular that a very small probability of making mistakes in announcing
or carrying out strategies will not affect the nPE, but it would lead to a
potentially very bad payoff in the other two Nash equilibria.14

14Note that an nPE is Nash, but not vice versa.
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6.2.3 Equilibrium Concepts and Refinements for the
Extensive Form

Next, we will discus equilibrium concepts and refinements for the extensive
form of a game. First of all, it should be clear that a Nash equilibrium of
the strategic form corresponds one-to-one with a Nash equilibrium of the
extensive form. The definition we gave applies to both, indeed. Since our
extensive form game, as we have defined it so far, is a finite game, we are
also assured existence of a Nash equilibrium as before. Consider the following
game, for example, here given in both its extensive and strategic forms:
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2\1 U D

(u, u) (6, 4) (1, 2)

(u, d) (6, 4) (8, 1)

(d, u) (4, 0) (1, 2)

(d, d) (4, 0) (8, 1)

This game has 3 pure strategy Nash equilibria: (D, (d, d)), (U, (u, u)), and
(U, (u, d)).15 What is wrong with this? Consider the equilibrium (D, (d, d)).
Player 1 moves first, and his move is observed by player 2. Would player 1
really believe that player 2 will play d if player 1 were to choose U , given
that player 2’s payoff from going to u instead is higher? Probably not. This
is called an incredible threat. By threatening to play ‘down’ following an
‘Up’, player 2 makes his preferred outcome, D followed by d, possible, and
obtains his highest possible payoff. Player 1, even though he moves first,
ends up with one of his worst payoffs.16 However, player 2, if asked to follow
his strategy, would rather not, and play u instead of d if he finds himself
after a move of U . The move d in this information set is only part of a best
reply because under the proposed strategy for 1, which is taken as given in
a Nash equilibrium, this information set is never reached, and thus it does
not matter (to player 2’s payoff) which action is specified. This is a type
of behaviour which we may want to rule out. This is done most easily by
requiring all moves to be best replies for their part of the game, a concept
we will now make more formal. (See also Figure 6.7)

15There are also some mixed strategy equilibria, namely (U, (P 1
2 (u)=1, P 2

2 (u)=α)) for
any α ∈ [0, 1], and (D, (P 1

2 (u)≤1/4, P 2
2 (u)=0)).

16It is sometimes not clear if the term ‘incredible threat’ should be used only if there
is some actual threat, as for example in the education game when the parents threaten
to punish. The more general idea is that of an action that is not a best reply at an
information set. In this sense the action is not credible at that point in the game.
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Figure 6.7: Valid and Invalid Subgames

Definition 21 Let V be a non-terminal node in Γ, and let ΓV be the game
tree comprising V as root and all its followers. If all information sets in Γ
are either completely contained in ΓV or disjoint from ΓV , then ΓV is called
a subgame.

We can now define a subgame perfect equilibrium, which tries to exclude
incredible threats by assuring that all strategies are best replies in all proper
subgames, not only along the equilibrium path.17

Definition 22 A strategy combination is a subgame perfect equilibrium
(SPE) if its restriction to every proper subgame is a subgame perfect equilib-
rium.

In the example above, only (U, (u, d)) is a SPE. There are three proper sub-
games, one starting at player 2’s first information set, one starting at his
second information set, and one which is the whole game tree. Only u is a
best reply in the first, only d in the second, and thus only U in the last.

Remarks:

1. Subgame Perfect Equilibria exist and are a strict subset of Nash Equi-
libria.

2. Subgame Perfect equilibrium goes hand in hand with the famous “back-
ward induction” procedure for finding equilibria. Start at the end of
the game, with the last information sets before the terminal nodes,

17The equilibrium path is, basically, the sequence of actions implied by the equilibrium
strategies, in other words the implied path through the game tree (along some set of arcs.)
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and determine the optimal action there. Then back up one level in the
tree, and consider the information sets leading up to these last deci-
sions. Since the optimal action in the last moves is now known, they
can be replaced by the resulting payoffs, and the second last level can
be determined in a similar fashion. This procedure is repeated until
the root node is reached. The resulting strategies are Subgame Perfect.

3. Incredible Threats are only eliminated if all information sets are sin-
gletons, in other words, in games of perfect information. As a counter-
example consider the following game:
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(1/2,0)

(-1,-1)

(1,0)

(-1,-1)

In this game there is no subgame starting with player 2’s information
set after 1 chose B or C, and therefore the equilibrium concept reverts
to Nash, and we get that (A, (c, c)) is a SPE, even though c is strictly
dominated by a in the non-trivial information set.

4. Notwithstanding the above, Subgame Perfection is a useful concept in
repeated games, where a simultaneous move game is repeated over and
over. In that setting a proper subgame starts in every period, and
thus at least incredible threats with regard to future retaliations are
eliminated.

5. Subgame Perfection and normal Form Perfect lead to different equilib-
ria. Consider the game we used before when we analyzed nPE:

b1

t b
©©©©©©

HHHHHHr

¡
¡¡
@
@@r

100, 0 −50,−50
r

T B
r

¡
¡¡

@
@@r

100, 0 100, 0
r

BT
p p p p p p p p p p p p p p p p p p p p2 1\2 T B

t (100, 0) (−50,−50)

b (100, 0) (100, 0)

As we had seen before, the nPE is (b, T ), but since there are no sub-
games, the SPE are all the Nash equilibria, i.e., (b, T ), (t, T ) and (b, B).
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Figure 6.8: The “Horse”

As we can see, SPE does nothing to prevent incredible threats if there
are no proper subgames. In order to deal with this aspect, the following
equilibrium concept has been developed. For games of imperfect informa-
tion we cannot use the idea of best replies in all subgames, since a player
may not know at which node in an information set he is. We would like to
ensure that the actions taken at an information set are best responses nev-
ertheless. In order to do so, we have to introduce what the player believes
about his situation at that information set. By introducing a belief system
— which specifies a probability distribution over all the nodes in each of
the player’s information sets — we can then require all actions to be best
responses given the belief system. Consider the example in Figure 6.8, which
is commonly called “The Horse.” This game has two pure strategy Nash
equilibria, (A, a, r) and (D, a, l). Both are subgame perfect since there are
no proper subgames at all. The second one, (D, a, l), is “stupid” however,
since player 2 could, if he is actually asked to move, play d, which would
improve his payoff from 1 to 4. In other words, a is not a best reply for
player 2 if he actually gets to move.

Definition 23 A system of beliefs φ is a vector of beliefs for each player,
φi, where φi is a vector of probability distributions, φj

i , over the nodes in each
of player i’s information sets Sj

i :

φj
i : xj

k 7→ [0, 1],
K
∑

k=1

φj
i (x

j
k) = 1; ∀xj

k ∈ Sj
i .

Definition 24 An assessment is a system of beliefs and a set of strategies,
(σ∗, φ∗).



138 L-A. Busch, Microeconomics May2004

Definition 25 An assessment (σ, φ) is sequentially rational if

Eφ∗
[

πi(σ
∗
i , σ

∗
−i|Sj

i )
]

≥ Eφ∗
[

πi(σi, σ
∗
−i|Sj

i )
]

, ∀i, ∀σi ∈ Σi, ∀Sj
i .

Definition 26 An assessment (σ∗, φ∗) is consistent if
(σ∗, φ∗) = limn→∞(σn, φn), where σn is a sequence of completely mixed be-
havioural strategies and φn are beliefs consistent with σn being played (i.e.,
obtained by Bayesian updating.)

Definition 27 An assessment (σ∗, φ∗) is a sequential equilibrium if it is
consistent and sequentially rational.

As you can see, some work will be required in using this concept! Re-
consider the horse in Figure 6.8. The strategy combination (A, a, r) is a
sequential equilibrium with beliefs α = 0, where α denotes player 3’s proba-
bility assessment of being at the left node. You can see this by considering
the following sequence of strategies: 1 plays D with (1/n)2, which converges
to zero, as required. 2 plays d with (1/n), also converging to zero. The
consistent belief for three thus is given by (from Bayes’ Rule)

α(n) =
(1/n)2

(1/n)2 + (1− (1/n)2)(1/n)
=

n

n2 + n− 1
=

1

n + 1− 1/n
,

which converges to zero as n goes to infinity. As usual, the tougher part is
to show that there is no sequence which can be constructed that will lead to
(D, a, l). Here is a short outline of what is necessary: In order for 3 to play
l we need beliefs which put at least a probability of 1/3 on being at the left
node. We thus need that 1 plays down almost surely, since player 2 will play
d any time 3 plays l with more than a 1/4 probability. But as weight shifts
to l for 3, and 2 plays d, sequential rationality for 1 requires him to play A
(4 > 3). This destroys our proposed setup.

Signalling Games

This is a type of game used in the analysis of quality choice, advertising,
warranties, or education and hiring. The general setup is that an informed
party tries to convey information to an uninformed party. For example,
the fact that I spend money advertising should convey the information that
my product is of high quality to consumers who are not informed about
the quality of my product. There are other sellers of genuinely low quality,
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Figure 6.9: A Signalling Game

however, and they will try to mimic my actions. In order to be credible my
action should therefore be hard (costly) to mimic. The equilibrium concept
used for this type of game will be sequential equilibrium, since we have to
model the beliefs of the uninformed party.

Consider the game in Figure 6.9. Nature determines if player 1 is a
high type or a low type. Player 1 moves left or right, knowing his type.
Player 2 then, without knowing 1’s true type, moves left or right also. The
payoffs are as indicated. This type of game is called a game of asym-
metric information, since one of the parties is completely informed while
the other is not. The usual question is if the informed party can convey
its private information or not. In the above game, the Nash equilibria
are the following: Let player 1’s strategy vector (S1, S2) indicate 1’s action
if he is the low and high type, respectively, while player 2’s strategy vector
(s1, s2) indicates 2’s response if he observes L and R, respectively. Then we
get that the pure strategy Nash equilibria are ((R,R), (r, r)), ((R,L), (r, r)),
and ((L,R), (l, l)). Now introduce player 2’s beliefs. Let 2’s belief of facing
a low type player 1 be denoted by α if 2 observes L, and by β if 2 observes
R. We then can get two sequential equilibria: ((L,R), (l, r), (α = 1, β = 0))
and ((R,R), (r, r), (α = 0, β = 0.5)) (It goes without saying that you should
try to verify this claim!). The first of these is a separating equilibrium.
The action of player 1 completely conveys the private information of player
1. Only low types move Left, only high types move Right, and the move
thus reveals the type of player. The second equilibrium, in contrast, is a
pooling equilibrium. Both types take the same move in equilibrium, and
no information is transmitted. Notice, however, that the belief that α = 0
is somewhat stupid. If you find yourself, as player 2, inadvertently in your
first information set, what should you believe? Your beliefs here say that
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you think it must have been the high type who made the mistake. This is
“stupid”, since the high type’s move L is strictly dominated by R, while the
low type’s move L is not dominated by R. It would be more reasonable to
assume, therefore, that if anything it was the low type who was trying to
“tell you something” by deviating (you are not on the equilibrium path if
you observe L, remember!)

There are refinements that impose restrictions like this last argument
on the beliefs out of the equilibrium path, but we will not go into them here.
Look up the Cho-Kreps criterion in any good game theory book if you want
to know the details. The basic idea is simple: of the equilibrium path you
should only put weight on types for whom the continuation equilibria off the
equilibrium path are actually better than if they had followed the proposed
equilibrium. The details are, of course, messy.

Finally, notice a last problem with sequential equilibrium. Minor per-
turbations of the extensive form change the equilibrium set. In particular,
the two games in Figure 6.10 have different sequential equilibria, even though
the games would appear to be quite closely related.
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Figure 6.10: A Minor Perturbation?

6.3 Review Problems

Question 1: Provide the definition of a 3-player game in extensive form.
Then draw a well labelled example of such a game in which you indicate all
the elements of the definition.

Question 2: Define “perfect recall” and provide two examples of games
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which violate perfect recall for different reasons.

Question 3: Assume that you are faced with some finite game. Will this
game have a Nash equilibrium? Will it have a Subgame Perfect Equilibrium?
Why can you come to these conclusions?

Question 4: Consider the following 3 player game in strategic form:

Left Player 3 Right

1\2 L R C

U (1, 1, 1) (2, 1, 2) (1, 3, 2)

C (1, 2, 1) (1, 1, 1) (2, 3, 3)

D (2, 1, 2) (1, 1, 3) (3, 1, 1)

1\2 L R C

U (2, 2, 2) (4, 2, 4) (2, 6, 4)

C (5, 0, 1) (1, 1, 1) (0, 1, 1)

D (3, 2, 3) (2, 2, 4) (4, 2, 2)

Would elimination of weakly dominated strategies lead to a good predic-
tion for this game? What are the pure strategy Nash equilibria of this game?
Describe in words how you might find the mixed strategy Nash equilibria.
Be clear and concise and do not actually attempt to solve for the mixed
strategies.

Question 5: Find the mixed strategy Nash equilibrium of this game:

1\2 L R C

U (1, 4) (2, 1) (4, 2)

C (3, 2) (1, 1) (2, 3)

Question 6: Consider the following situation and construct an extensive
form game to capture it.
A railway line passes through a town. Occasionally, accidents will happen
on this railway line and cause damage and impose costs on the town. The
frequency of these accidents depends on the effort and care taken by the
railway — but these are unobservable by the town. The town may, if an
accident has occurred, sue the railway for damages, but will only be successful
in obtaining damages if it is found that the railway did not use a high level
of care. For simplicity, assume that there are only two levels of effort/care
(high and low) and that the courts can determine with certainty which level
was in fact used. Also assume that going to court costs the railway and the
town money, that effort is costly for the railway (high effort reduces profits),
that accidents cost the railway and the town money and that this cost is
independent of the effort level (i.e., there is a “standard accident”). Finally,
assume that if the railway is “guilty” it has to pay the town’s damages and
court costs.
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Question 7: Consider the following variation of the standard Battle of the
Sexes game: with probability α Juliet gets informed which action Romeo has
taken before she needs to choose (with probability (1 − α) the game is as
usual.)

a) What is the subgame perfect equilibrium of this game?
b) In order for Romeo to be able to insist on his preferred outcome,

what would α have to be?

Question 8: (Cournot Duopoly) Assume that inverse market demand is
given by P (Q) = (Q − 10)2, where Q refers to market output by all firms.
Assume further that there are n firms in the market and that they all have
zero marginal cost of production. Finally, assume that all firms are Cournot
competitors. This means that they take the other firms’ outputs as given and
consider their own inverse demand to be pi(qi) = (

∑

j 6=i qj + qi−10)2. Derive
the Nash equilibrium output and price. (That is, derive the multilateral best
response strategies for the output choices: Given every other firm’s output,
a given firm’s output is profit maximizing for that firm. This holds for all
firms.) Show that market output converges to the competitive output level as
n gets large. (HINT: Firms are symmetric. It is then enough for now to focus
on symmetric equilibria. One can solve for the so-called reaction function of
one firm (it’s best reply function) which gives the profit maximizing level
of output for a given level of joint output by all others. Symmetry then
suggests that each firm faces the same joint output by its (n−1) competitors
and produces the same output in equilibrium. So we can substitute out and
solve.)

Question 9∗: Assume that a seller of an object knows its quality, which we
will take to be the probability with which the object breaks during use. For
simplicity assume that there are only two quality levels, high and low, with
breakdown probabilities of 0.1 and 0.4, respectively. The buyer does not know
the type of seller, and can only determine if a good breaks, but not its quality.
The buyer knows that 1/2 of the sellers are of high quality, and 1/2 of low
quality. Assume that the seller receives a utility of 10 from a working product
and 0 from a non-working product, and that his utility is linear in money (so
that the price of the good is deducted from the utility received from the good.)
If the seller does not buy the object he is assumed to get a utility level of 0.
The cost of the object to the sellers is assumed to be 2 for the low quality seller
and 3 for the high quality seller. We want to investigate if signalling equilibria
exist. We also want to train our understanding of sequential equilibrium, so
use that as the equilibrium concept in what follows.

a) Assume that sellers can only differ in the price they charge. Show
that no separating equilibrium exist.



Game Theory 143

b) Now assume that the sellers can offer a warranty which will replace
the good once if it is found to be defective. Does a separating equilibrium
exist? Does a pooling equilibrium exist?

Question 10∗: Assume a uniform distribution of buyers over the range of
possible valuations for a good, [0, 2].

a) Derive the market demand curve.
b) There are 2 firms with cost functions C1(q1) = q1/10 and C2(q2) = q2

2.
Find the Cournot Equilibrium and calculate equilibrium profits.

c) Assume that firm 1 is a Stackelberg leader and compute the Stack-
elberg equilibrium. (This means that firm 1 moves first and firm 2 gets to
observe firm 1’s output choice. The Stackelberg equilibrium is the SPE for
this game.)

d) What is the joint profit maximizing price and output level for each
firm? Why could this not be attained in a Nash equilibrium?
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Chapter 7

Review Question Answers

7.1 Chapter 2

Question 1:
a) There are multiple C(·) which satisfy the Weak Axiom. Note, how-

ever, that you have to check back and forth to make sure that the WA is
indeed satisfied. (I.e., C({x, y, z}) = {x}, C({x, y}) = {x, y} does not sat-
isfy the axiom since while the check for x seems to be ok, you also have
to check for y, and there it fails.) One choice structure that does work
is C({x, y, z}) = {x}, C({x, z, w}) = {x}, C({y, w, z}) = {w}, C({y, w}) =
{w}, C({x, z}) = {x}, C({x,w}) = {x}, C({x}) = {x}.

b) Yes (I thought of that first, actually, in deriving the above) it is
x º w º y º z.

c) Yes, it is transitive.
d) I was aiming for an application of out Theorem: our set of bud-

get sets B does not contain all 2 and 3 element subsets of X. Missing are
{x, y, w}, {x, y}, {y, z}, {w, z}.

e) The best way to go about this one is to determine where we can pos-
sibly get this to work. Examination of the sets B shows that the two choices
y, x only appear in one of the sets and thus must be our key if we want to sat-
isfy the WA without having rational preferences. Some fiddling reveals that
the following works: C({x, y, z}) = {x}, C({x, z, w}) = {w}, C({y, w, z}) =
{y}, C({y, w}) = {y}, C({x, z}) = {x}, C({x,w}) = {w}, C({x}) = {x}.
The problem is intransitivity, since the above implies that y º w º x º z
but we also have x º y!

Question 2: Here you have to make sure to maximize income for any given

145
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work Part a Partb
hrs 1 then 2 2 then 1 Max 1 then 2 2 then 1 Max
1 112 108 112 112 108 112
2 124 116 124 124 116 124
3 136 130 136 136 1302

3
136

4 148 144 148 148 1451
3

148
5 160 158 160 160 160 160
6 172 172 172 172 1742

3
1742

3

7 188 186 188 188 1891
3

1891
3

8 204 200 204 204 204 204
9 212 212 212 212 216 216
10 220 224 224 220 228 228
11 234 236 236 2342

3
240 240

12 248 248 248 2491
3

252 252
13 262 260 262 264 264 264
14 276 272 276 2782

3
276 2782

3

15 290 288 290 2931
3

292 2931
3

16 304 304 304 308 308 308

Table 7.1: Table 1: Computing maximal income

amount of work. In parts (a) and (b) you have to choose to work either job
1 then job 2 (after 8 hours in job 1) or job 2 then job 1. Simply plotting the
two and then taking the outer hull (i.e., the highest frontier) for each leisure
level gives you the frontier. In (a) they only cross twice (at 9 and 12 hours
of work) while in part (b) they cross 4 times. You can best see this effect by
considering a table in which you tabulate total hours worked against total
income, computed by doing job 1 first, and by doing job 2 first. This is shown
in Table 1. In neither part a) nor in part b) is the budget set convex.

c) This is a possibly quite involved problem. The intuitive answer is
that it will not matter since marginal and average pay is (weakly) increasing
in both jobs. Here is a more general treatment of these questions:
We really are faced with an maximization problem, to max income given
the constraints, for any given total amount worked. Let h1 and h2 denote
hours worked in jobs 1 and 2, respectively. Then the objective function
is I(h1, h2) = h1w1(h1) + h2w2(h2), where wi(hi) are the wage schedules.

The wage schedules have the general form w1(h1) =

{

w1 if h1 ≤ C1

w1 if h1 ≥ C1
and

w2(h2) =

{

w2 if h2 ≤ C2

w2 if h2 ≥ C2
, where wi < wi. I ignore here that no hours

above 8 are possible for either job, choosing to put that information into the
constraints later.
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Consider now the iso-income curves in (h1, h2) space which result. We
will have four regions to consider, namely A = {(h1, h2)|h1 ≤ C1, h2 ≤ C2},
B = {(h1, h2)|h1 ≤ C1, h2 ≥ C2}, C = {(h1, h2)|h1 ≥ C1, h2 ≤ C2},
D = {(h1, h2)|h1 ≥ C1, h2 ≥ C2}. The slope of the iso-income curves for
the regions is easily seen to be the negative of the ratio of wages, so we have
S(A) = −w1/w2, S(B) = −w1/w2, S(C) = −w1/w2, S(D) = −w1/w2. It is
obvious that S(C) < S(D) and S(A) < S(B), as well as that S(C) < S(A)
and S(D) < S(B). This implies, of course, that S(C) < S(A) < S(B) as
well as that S(C) < S(D) < S(B), with the comparison of S(A) to S(D)
indeterminate. (But luckily not needed in any case.) The important fact
which follows from all of this is that the iso-income curves are all concave to
the origin and piece-wise linear.

Now superimpose the choice sets onto this. Note that without any re-
strictions H = h1 + h2, that is, for any given number of hours H the hours
in each job are “perfect substitutes”. These iso-hour curves are all straight
lines with a slope of −1. (For our parameters all of S(A), S(C), S(D) are
less than −1, while S(B) > −1, but his is not important.) For parts (a)
and (b) the feasible set consists of the boundaries of the 8 × 8 square of
feasible hours, where either hi = 0, hj < 8, or where hi = 8, 0 ≤ hj ≤ 8.
The choice set is thus given by the intersection of the iso-hour lines with the
feasible set (the box boundary). In part (c) this restriction is removed and
the whole interior of the box is feasible. Due to the concavity to the origin
of the iso-income lines this is of no relevance, however. Note how I have used
our usual techniques of iso-objective curves and constraint sets to approach
this problem. Works pretty well, doesn’t it!

d) Now we “clearly” take up jobs in decreasing order of pay, starting
with the highest paid and progressing to the lower paid ones in order. The
resulting budget set will be convex.

Question 3: The consumer will

maxx

{

x0.3
1 x0.6

2 + λ (m− x1p1 − x2p2)
}

which leads to the first order conditions

0.3x−0.7
1 x0.6

2 = λp1, 0.6x0.3
1 x−0.4

2 = λp2, x1p1 + x2p2 = m.

The utility function is quasi-concave (actually, strictly concave in this case)
and the budget set convex, so the second order conditions will be satisfied.
Combining the first two first order conditions we get

0.3x2

0.6x1

=
p1

p2

=⇒ x2 =
2p1

p2

x1.
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Substitute into the budget constraint and simplify:

x1p1 +
2p1

p2

x1p2 = m =⇒ x1 =
m

3p1

.

Now use this to solve for x2: x2 = 2m
3p2

. So (x1(p,m), x2(p,m)) =
(

m
3p1

, 2m
3p2

)

.

To find the particular quantity demanded, simply plug in the numbers
and simplify:

x1 =
3× 412 + 1× 72

3× 3
=

412 + 24

3
=

436

3
;

x2 =
2(3× 412 + 1× 72)

3× 1
=

2(412 + 24)

1
= 872.

Question 4: The key is to realize that this utility function is piece-wise
linear with line segments at slopes −5,−1,−1/5, from left to right. The seg-
ments join at rays from the origin with slopes 3 and 1/3. Properly speaking,
neither the Hicksian nor the Marshallian demands are functions. The func-
tion has either a perfect substitute or Leontief character. In the former the
substitution effects approach infinity, in the latter they are zero. Demands
are easiest derived from the price offer curve, which is a nice zigzag line.
It starts at the intercept of the budget with the vertical axis (point A). It
follows the indifference curve segment with −5 slope to the ray with slope
3. Call this point B. From there it follows the ray with slope 3 until that
ray intersects a budget drawn from A with a slope of 1 (point C). It then
continues on this budget and the coinciding indifference curve segment to
the ray with slope 1/3 (point D). Up along that ray to an intersection with a
budget from A with slope 1/5 (point E), along that budget to the intercept
with the horizontal axis (point F), and then along the horizontal axis off to
infinity.
x2

x1

C
C
C
C
C
C
C
C

@
@
@
@
@
@
@
@

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX£
£
£
£
£
£
£
£
££

³³
³³

³³
³³

³³
³³

³³
³³
³³

³³
³³

³³
A

B

C

D

E

F

Now we can solve for the demands along the different pieces of the
offer curve and get the Marshallian demand. Note that demand is either a
whole range, or a “proper demand”. The ranges can be computed from the
endpoints (i.e., A to B, C to D, E to F.) Along the rays demand is solved as for
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a Leontief consumer: we know the ratio of consumption, we know the budget.
So for example on the first ray segment (B to C) we know that x2 = 3x1.
Also, p1x1 + p2x2 = w. Hence x1(p1 + 3p2) = w, and x1 = w/(p1 + 3p2).
(For the Hicksian demand we simply need to fix one indifference curve and
compute the points along it. We then get either a segment (like A to B
above), or we stay at a kink for a range of prices.) The demands for good 1
therefore are

x1(p, w) =







































0, if p1/p2 > 5;
[0, 5w/(8p1)] , if 5 = p1/p2;
w/(3p2 + p1), if 5 > p1/p2 > 1;
[w/(4p1), 3w/(4p1)] , if p1/p2 = 1;
3w/(3p1 + p2), if 1 > p1/p2 > 1/5;
[3w/(8p1), w/p1] , if p1/p2 = 1/5;
w/p1, if 1/5 > p1/p2.

h1(p, u) =







































0, if p1/p2 > 5;
[0, u/8] , if p1/p2 = 5;
u/8, if 5 > p1/p2 > 1;
[u/8, 3u/16] , if p1/p2 = 1;
3u/16, if 1 > p1/p2 > 1/5;
[3u/16, u] , if p1/p2 = 1/5;
u, if 1/5 > p1/p2.

The demands for good 2 are similar and left as exercise. The income ex-
pansion paths and Engel curves can be whole regions at price ratios 1,5,1/5,
otherwise the income expansion paths are the axes or rays, and the Engel
curves are straight increasing lines.

Question 5: The elasticity of substitution measures by how much the con-
sumption ratio changes as the price ratio changes (both measured in per-
centages.) In other words, as the price ratio changes the slope of the budget
changes and we know this will cause a change in the ratio of the quantity
demanded of the goods. But by how much? The higher the value of the
elasticity, the larger the response in demands.

Question 6: First we need to realize that the utility index which each
function assigns to a given consumption point does not have to be the same.
Instead, as long as the MRS is identical at every point, two utility functions
represent the same preferences. So instead of taking the limit of the utility
function directly, we will take the limits of the MRS and compare those to
the MRSs of the other functions.

MRS =
u1

u2

=
(1/ρ)(xρ

1 + xρ
2)

(1−ρ)/ρ(ρxρ−1
1 )

(1/ρ)(xρ
1 + xρ

2)
(1−ρ)/ρ(ρxρ−1

2 )
=

xρ−1
1

xρ−1
2

=
x1−ρ

2

x1−ρ
1

.
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The MRSs for the other functions are

CD:
x2

x1

; Perfect Sub: 1; Leon: 0, or ∞.

So, consider the Leontief function min{x1, x2}. Its MRS is 0 or ∞. But as
ρ→ −∞ we see that (x2/x1)

1−ρ → (x2/x1)
∞. But if x2 > x1 the fraction is

greater than 1 and an infinite power goes to infinity. If x2 < x1 the fraction
is less than one and the power goes to zero. The Cobb-Douglas function x1x2

has MRS x2/x1. But as ρ → 0 the MRS of our function is just that. The
perfect substitute function x1 + x2 has a constant MRS of 1. But as ρ → 1
the MRS of our function is (x2/x1)

0 = 1. Therefore the CES function “looks
like” those three functions for those choices of ρ. The parameter ρ essentially
controls the curvature of the IC’s.

Question 7: Set up the consumer’s optimization problem:

maxx1,x2,x3
{x1 + lnx2 + 2lnx3 + λ(m− p1x1 − p2x2 − p3x3)} .

The FOCs are

1− λp1 = 0;
1

x2

− λp2 = 0;
2

x3

− λp3 = 0

and the budget. The first of these allows us to solve for λ = 1/p1. Therefore
the second and third give us x2 = p1/p2 and x3 = 2p1/p3. Combining this
with the budget we get x1 = m/p1 − 3. Of course, this is only sensible if
m > 3p1. If it is not we must be at a corner solution. In that case x1 = 0
and all money is spent on x2 and x3. The second and third FOC above tell
us that x3/x2 = 2p2/p3. Hence (remember x1 = 0 now) m = p2x2 + 2p2x2

and x2 = m/(3p2) while x3 = 2m/(3p3). So we get

x(p,m) =







(

m
p1

− 3, p1

p2

, 2p1

p3

)

if m > 3p1
(

0, m
3p2

, 2m
3p3

)

if m ≤ 3p1

Question 8: Here we have a pure exchange economy with 2 goods and 2
consumers. We can best represent this in an Edgeworth box.
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Suppose x1 is on the horizontal axis and x2 is on the vertical, and let
consumer B have the lower left hand corner as origin, consumer A the upper
right hand corner. (I made this choice because I like to have the “harder”
consumer oriented the usual way.) The dimensions of the box are 20 by 20
units. The first thing to do is to find the Pareto Set (the contract curve),
since we know that any equilibrium has to be Pareto efficient. The MRS
for person A is 4/3, the MRS for person B is 3x2/(4x1). Therefore the
Pareto Set is defined by x2/x1 = 16/9 (in person B’s coordinates.) This
is a straight ray from B’s origin with a slope greater than 1, and therefore
above the main diagonal. The Pareto set is this ray and the portion of the
upper boundary of the box from the ray’s intersection point to the origin of
A. There now are 2 possibilities for the equilibrium. Either it is on the ray,
and therefore must have a price ratio of 4/3. Or it is on the upper boundary
of the box, in which case the price ratio must be below 4/3, but we know
that B’s consumption level for good 2 is 20. In the first case we have 2
equations defining equilibrium. The ray, x2 = 16x1/9, and the budget line
(x2 − 11) = 4(8 − x1)/3. From this we get 16x1/9 − 11 = 32/3 − 12x1/9
and from that 28x1/9 = 65/3 and thus x1 = 195/28 < 20. It follows that
x2 = (16 × 195)/(9 × 28) = 780/63 = 260/21 < 20. Since both of B’s
consumption points are strictly within the interior of the box, we are done.
All that remains is to compute A’s allocation. The equilibrium is therefore

(p∗, (xA), (xB)) =

(

4

3
,

(

20− 195

28
, 20− 780

63

)

,

(

195

28
,
780

63

))

.

Question 9: Again we have a square Edgeworth box, 20×20. Again I choose
to put consumer B on the bottom left origin. B’s preferences are quasi-linear
with respect to x1, A’s are piece-wise linear with slopes 4/3 and 3/4 which
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meet at the kink line x2 = x1 (in A’s coordinates!) which coincides with
the main diagonal. The MRS for B’s preferences is 3x2/4. We have Pareto
optimality when 3x2/4 = 4/3→ x2 = 16/9 and when 3x2/4 = 3/4→ x2 = 1.
So, the Pareto Set is the vertical axis from B’s origin to xB

2 = 1, the horizontal
line xB

2 = 1 to the main diagonal (the point (1, 1) in other words), up the
main diagonal to the point (xB

1 , xB
2 ) = (16/9, 16/9), from there along the

horizontal line xB
2 = 16/9 to the right hand edge of the Box, and then up

that border to A’s origin.
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By inspection, the most likely candidate for an equilibrium is a price
ratio of 4/3 with an allocation on the second horizontal line segment. Let
us attempt to solve for it. First, the budget equation (in B’s coordinates) is
3(x2− 11) = 4(8− x1). Second, we are presuming that x2 = 16/9. So we get
16/3− 33 = 32− 4x1, or x1 = 1411

12
. Since this is less than 20 we have found

an interior point and are done. The equilibrium is

(p∗, (xA), (xB)) =

(

4

3
,

(

5
1

12
,
164

9

)

,

(

14
11

12
,
16

9

))

.

Question 10: To prove this we need to show the implication in both di-
rections: (⇐) : Suppose x Â y. Then ∃B, x, y ∈ B with the property that
x ∈ C(B), y /∈ C(B). Consider all other B ′ ∈ B with the property that
x, y ∈ B′. By the Weak Axiom 6∃B ′ with y ∈ C(B′) since otherwise the set
B would violate the weak axiom (applied to the choice y with the initial set
B′.) Therefore x Â∗ y.
(⇒) : Let x Â∗ y. The first part of the definition requires ∃B, x, y,∈ B, x ∈
C(B). By the weak axiom there are two possibilities: either all B ′ ∈ B with
x, y ∈ B′ have {x, y} ∈ C(B ′) or none have y ∈ C(B ′). The second part of
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the definition requires us to be in the second case, but then y /∈ C(B), and
so x Â y.
If the WA fails a counter example suffices: Let X = {x, y, z},
B = {{x, y}, {x, y, z}}, C({x, y}) = {x}, C({x, y, z}) = {x, y}. This violates
the WA. C({x, y}) = {x} demonstrates that x Â y by definition. On the
other hand it is not true that x Â∗ y (let B = {x, y} and B ′ = {x, y, z} in
the definition of Â∗.

Question 11:
a) This is another 20 by 20 box, with the endowment in the centre.

Suppose B’s origin on the bottom left, A’s the top right. As in question 8,
A’s indifference curves have a constant MRS of α and are perfect substitute
type. B’s ICs have a MRS of βx2/x1 and are Cobb-Douglas. The contract
curve in the interior must have the MRSs equated, so it occurs where (in
B’s coordinates) x2/x1 = α/β. This is a straight ray from B’s origin and
depending on the values of α and β it lies above or below the main diagonal.
Since these cases are (sort of) symmetric we pick one, and assume that α/β >
1. The contract curve is this ray and then the part of the upper edge of the
box to A’s origin.
As in question 8 there are two cases for the competitive equilibrium. Either
it occurs on the part of the Contract curve interior to the box, or it occurs on
the boundary of the box. In the first case the slope of the budget and hence
the equilibrium price must be α, since both MRSs have that slope along the
ray and in equilibrium the price must equal the MRS. Note that the budget
now coincides with A’s indifference curve through the endowment point. The
equilibrium allocation is determined by the intersection of the contract curve
and this budget/IC. So we have two equations in two unknowns:

α =
x2 − 10

10− x1

and x2 =
α

β
x1.

Hence α(10−x1) = αx1/β or αβ10 = x1(α+αβ) and thus x1 = β10/(1+β)
and x2 = α10/(1 + β). These are the consumption levels for B. A gets the
rest. The equilibrium thus would be (p∗, (xA

1 , xB
2 ), (xB

1 , xB
2 )) =

(

α,

(

10
2 + β

1 + β
, 10

2(1 + β)− α

1 + β

)

,

(

β10

1 + β
,

α10

1 + β

))

which only makes sense if the allocation indeed is interior, that is, as long as
10α/(1 + β) < 20, or (α− β) < (2 + β).
If that is not true we find ourselves in the other case. In that case we know
that we are looking for an equilibrium on the upper boundary of the box and
thus know that xB

2 = 20 while xA
2 = 0. It remains to determine p and the

allocations for good 1. At the equilibrium point the budget must be flatter
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than A’s IC (so that A chooses to only consume good 1). The allocation
must also be the optimal choice for B and hence the budget must be tangent
to B’s IC, since for B this is an interior consumption bundle (interior to B’s
consumption set, that is.) So we again have to solve two equations in 2
unknowns:

βc2

c1

= p and p =
c2 − 10

10− c1

while c2 = 20.

It follows that β20(10− c1) = 10c1 and therefore c1 = 20β/(1 + 2β). A gets
the rest. The equilibrium is therefore

(p∗, (xA
1 , xA

2 ), (xB
1 , xB

2 )) =

(

1 + 2β,

(

20
1 + β

1 + 2β
, 0

)

,

(

β20

1 + 2β
, 20

))

.

b) All endowments above and to the right of the line x2 = 40 − 2x1 in
B’s coordinates will lead to a boundary equilibrium. All those on this line
and below will lead to an interior equilibrium with p = 2.

Question 12:
a) The social planner’s problem is

maxl

{

ln(4
√

16− l) +
1

2
ln(l)

}

which has first order condition

− 1

4
√

16− l

2√
16− l

+
1

2l
= 0.

Hence 16− l = l and so l∗ = 8, x∗ = 8, c∗ = 8
√

2.
b) Since the consumer’s problem requires profits, we solve for the firm

first. maxx{p4
√

x − wx} has FOC 2p/
√

x = w and leads to firm labour
demand of x(p, w) = 4p2/w2, consumption good supply of c(p, w) = 8p/w,
and profits of π(p, w) = 4p2/w.
The consumer will

maxc,l

{

lnc +
1

2
lnl + λ (16w + π(p, w)− pc− wl)

}

which has first order conditions 1/c − λp = 0; 1/(2l) − λw = 0; 16w +
π(p, w) = pc + wl. The first 2 imply that pc = 2lw. Substituting into
the third and using the profits computed above yields demand of c(p, w) =
32w/(3p) + 8p/(3w) and leisure demand of l(p, w) = 16/3 + 4p2/(3w2).
We can now solve for the equilibrium price ratio. Take any one market and
set demand equal to supply. For the goods market this implies 32w/(3p) +
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8p/(3w) = 8p/w, and hence p2/w2 = 2. Substituting into the demands and
supplies this gives l∗ = 8, and hence all values are the same as in the social
planner’s problem in part a). You may want to verify that you could have
solved for the price ratio from the labour market.
The complete statement of the general equilibrium is: The equilibrium price
ratio is p/w =

√
2, the consumer’s allocation is (c, l) = (8

√
2, 8), and the

firm produces 8
√

2 units consumption good from 8 units input. Note that we
cannot state profits without fixing one of the prices. So let w = 1 (so that
we use labour as numeraire), then p =

√
2 and profits are 8.

7.2 Chapter 3

Question 1:
a) Zero arbitrage means that whichever way I move between periods, I

get the same final answer. In particular I could lend in period 1 to collect
in period three, or I could lend in period 1 to period 2, and then lend the
proceeds to period 3. Hence the condition is

(1 + r12)(1 + r23) = (1 + r13).

Note that if we where to treat r13 not as a simple interest rate but as a
compounding one, we’d get (1 + r12)(1 + r23) = (1 + r13)

2 instead.
b) You have to adopt one period as your viewpoint and then put all

other values in terms of that period (by discounting or applying interest).
With period 3 as the viewpoint I use period 3 future values for everything:

B = {(c1, c2, c3)|(1+r13)c1 +(1+r23)c2 +c3 = (1+r13)m1 +(1+r23)m2 +m3}

Note that any other viewpoint is equally valid. The restriction in (a) means
that it does not matter which interest rate I use to compute the forward value
of c1, say. Indeed, without that restriction I would get an infinite budget if
it is possible to borrow infinite amounts. With some borrowing constraints
in place I would have to compute the highest possible arbitrage profits for
the various periods and compute the resulting budget.

c) This is a standard downward sloping budget line in (c2, c3) space
with a slope of −(1 + r23). It does not necessarily have to go through the
endowment point (m2,m3), however. It will be below that point if c1 > m1

and above that point if c1 < m1.
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Question 2:
a) The easy way to get this is to first ignore the technology. The market

budget is a straight line with a slope of−1 through the point (100, 100), which
is truncated at the point (160, 40), where the budget becomes vertical. Note
that the gross rate of return is 1 since the interest rate is 0. Now consider the
technology and the implications of zero arbitrage: Joe can move consumption
from period 1 to period 2 in two ways, via the financial market, or via
“planting”. Both must yield the same gross rate of return at the optimum
(why? we know that at the optimum of a maximization problem the last
dollar allocated to each option must yield the same marginal benefit.) The
gross rate of return at the margin is nothing but the marginal product of the
technology, however. So, compute the MP (5/

√
x1) and find the investment

level at which the MP is 1.

5√
x1

= 1 −→ 5 =
√

x1 −→ x1 = 25.

At optimal use at an interior optimum Joe invests 25 units (and collects 50
in the next period.) This means that from any point on the financial market
budget Joe can move left 25 and up 50. So that gives a straight line with
slope −1 which starts at (0, 225) and goes to (135, 90). After this point there
is a corner solution in technology choice: Joe cannot use the market any
more. The technology therefore may give a higher return than the market.
So the budget follows the (flipped over to the left) technology frontier down
to the point (160, 40), and down to (160, 0) from there.

b) First simplify the preferences (this step is not necessary!). Applying
a natural logarithm gives the function Û(c1, c2) = c4

1c
6
2 which represents the

same preferences. Applying the 10th root gives Ũ(c1, c2) = c.4
1 c.6

2 which also
represents the same preferences and is recognized as a Cobb-Douglas. Now
you can either compute the MRS (2c2/3c1) and set that equal to 1 (since
most of the budget has a slope of −1 and we know that MRS = Slope at
the optimum.) That gives you two equations in two unknowns, and we can
solve:

c2 = 225− c1, c2 = 3c1/2 → 450 = 5c1 → c1 = 90, c2 = 135.
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We then double check that the assumption that we are on the −1 sloped
portion of the budget was correct, which it is (by inspection.) Or you could
use the demand function for C-D, so you know

(c1, c2) =

(

.4M

p1

,
.6M

p2

)

=

(

.4× 225

1 + 0
,
.6× 225

1

)

= (90, 135).

Now this is his final consumption bundle. In order to get there he invested
25 units, so on the “market budget” line he must have started at (115, 85),
and that required him to borrow 15 units.

In summary, he borrows 15, giving him 115, of which he invests 25, so he
has 90 left to consume. In the next period he gets 100 from his endowment,
50 from the investment, for a total of 150, of which he has to use 15 to pay
back the loan, so he can consume 135!

Question 3: I will not draw the diagram but describe it. You should refer
to a rough diagram while reading these solutions to make sense of them.

a) The indifference curves have two segments with a slope of −1.3 and
−1.2 respectively. The switch (kink) occurs where

23

(

12

10
c1 + c2

)

= 22

(

13

10
c1 + c2

)

→ c2 = (22×13−23×12)c1/10 = c1.

b) Note that the budget has a slope of 1.25 which is less than 1.3 and
more than 1.2, so she consumes at the kink. Thus she is on the kink line and
the budget:

c1 = c2 and − 1.25 =
c2 − 8

c1 − 9
→ c1 = c2 = 77/9.

c) Again she consumes at the kink, so

c1 = c2 and − 1.25 =
c2 − 12

c1 − 5
→ c1 = c2 = 73/9.

d) Here we need to work back. Note that at the slopes implied by the
interest rates she continues to consume at her kink line. The reason is that
both 1.25 and 1.28 are bigger than 1.2, the slope of her lower segment, but
less than 1.3, the slope of the steep segment. Hence optimal consumption is
at the kink and she borrows if she has less period 1 endowment than period
2 endowment. She lends money if she has larger period 1 endowment than
period 2 endowment. So for all endowments above the main diagonal she is
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a borrower, for all endowments below a lender.
e) Now she never trades. To lend money the budget slope is 1.18 which

is less than either of her IC segment slopes. She would not want to lend ever
at this rate no matter what her endowment. On the other hand, suppose
she were to borrow. The budget slope is 1.32 which is steeper than even her
steepest IC segment. She would not borrow. Thus she remains at the kink
in her budget (the endowment point) no matter where it is.

Question 4: Again I will not draw the diagram but describe it. You should
refer to a rough diagram while reading these solutions to make sense of
them.

a) This is a 20 by 10 box. Suppose A’s origin on the bottom left,
B’s the top right. A’s indifference curves have a MRS of c2/(αc1) and are
nice C-D type curves. B’s ICs have a MRS of 1/β and are straight lines.
The contract curve in the interior must have the MRSs equated (from Econ
301: for differentiable utility functions an interior Pareto optimum has a
tangency), so it occurs where c2/c1 = α/β. This is a straight ray from A’s
origin and depending on the values of α and β it lies above or below the
main diagonal. Since these cases are (sort of) symmetric we pick one, and
assume that α/β > 1/2. The contract curve is this ray and then the part of
the upper edge of the box to B’s origin.

b) There are two cases, either the Contract curve ray is shallow enough
that the equilibrium occurs on it, or it is so steep that the equilibrium occurs
on the top boundary of the box. In the first case the slope of the budget
and hence the equilibrium price must be 1/β, since both MRSs have that
slope along the ray and in equilibrium the price must equal the MRS. So the
equilibrium interest rate is (1 − β)/β. Note that the budget now coincides
with player B’s indifference curve through the endowment point. Hence the
ray of the contract curve must intersect that, and it does so only if it intersects
the top boundary to the right of the intersection of B’s IC with the boundary.
The latter occurs at (4(3−β), 10). The former occurs at (10β/α, 10). So the
interior solution obtains if 10β/α > 4(3−β), or if 10β > 12α− 4αβ. In that
case the equilibrium allocations are derived by solving the intersection of the
budget and the ray:

c2 = αc2/β and − 1

β
=

c2 − 6

c1 − 12
→ cA

1 =
6(2 + β)

1 + α
, cA

2 =
α6(2 + β)

β(1 + α)
.

B gets the remainder.

In the other case, when the ray fails to intersect B’s IC, we know that
we are looking for an equilibrium on the upper boundary of the box (so
cA
2 = 10 and cB

2 = 0.) At this point we must have a budget flatter than B’s
IC (so that B chooses to only consume good 1). It must also be tangent to
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A’s IC, since for player A this is an interior consumption bundle (interior to
his consumption set, that is.) So we require 1 + r = 10/(αc1) to have the
tangency, and we require 1 + r = (10 − 6)/(12 − c1) in order to be on the
budget line. These are two equations in two unknowns again, so we solve:
cA
1 = 60/(5+2α) and r = (5−4α)/(6α). B gets the rest of good 1, of course.

7.3 Chapter 4

Question 1: We wish to show that for any concave u(x)

1

3
u(24) +

1

3
u(20) +

1

3
u(16) ≥ 1

2
u(24) +

1

2
u(16).

We can do the following: first bring the u(24) and u(16) to the RHS:

2

6
u(20) ≥ 1

6
u(24) +

1

6
u(16).

Then multiply both sides by 3:

u(20) ≥ 1

2
u(24) +

1

2
u(16).

The LHS of this represents a certain outcome of 20, the RHS a lottery with
2 equally likely outcomes. Now note that

1

2
24 +

1

2
16 = 20.

That is, the expected value of the lottery on the RHS of the last inequality
above is equal to the expected value of the degenerate lottery on the LHS.
Therefore this penultimate inequality must be true, since it coincides with
the definition of a risk averse consumer. (utility of expectation greater than
expectation of utility.)

Question 2: The certainty equivalent is defined by

U(CE) =
∑

piu(xi) =

∫

u(x)dF (x).

Using the particular function we are given:

√
CE = α

√
3600 + (1− α)

√
6400

CE = (α60 + (1− α)80)2 = (80− 20α)2 .
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Note that the expected value of the gamble is E(w) = α3600+(1−α)6400 =
6400− α2800 and thus the maximal fee this consumer would pay for access
to fair insurance would be the difference E(w)− CE = 400α(1− α).

Question 3: The coefficient of absolute risk aversion is defined as rA =
−u′′(w)/u′(w). Computing this for both functions we get

u(w) = lnw −→ rA =
1

w
; u(w) = 2

√
w −→ rA =

1

2w
.

Therefore the two consumers exhibit equal risk aversion if the second con-
sumer has half the wealth of the first. Their relative risk aversion coefficients
(defined as −u′′(w)w/u′(w) are 1 and 1/2, respectively. That means that
while, if the logarithm consumer has twice the wealth as the root consumer,
he will have the same attitude towards a fixed dollar amount gamble, he
will be more risk averse with respect to a gamble over a given proportion of
wealth. (Note that the two statements don’t contradict one another: a $1
gamble represents half the percentage of wealth for a consumer with twice
the wealth!)

Question 4: Here we need an Edgeworth Box diagram, which is a square,
15 units a side. Suppose we have consumer A on the bottom left origin (B
then goes top right). Suppose also that we put state R on the horizontal.
Note that the certainty line is the main diagonal of the box! This observation
is crucial, since it means that there is no aggregate risk!

General equilibrium requires that demand is equal to supply for each
good, but we can’t find those here (not knowing the consumers’ tastes), so it
is not useful information. But we also know that in general equilibrium the
price ratio must equal each consumer’s MRS (since GE is Pareto optimal and
that requires MRSs to be equalized, at least for interior allocations.) Note
that the two MRSs here are

MRSA =
πu′

A(cA
R)

(1− π)u′
A(cA

S )
MRSB =

πu′
B(cB

R)

(1− π)u′
B(cB

S )

On the certainty line (the main diagonal) cA
S = cA

R and cB
S = cB

R, so MRSA =
MRSB = π/(1 − π). In other words, the certainty line for each consumer
coincides and together they are the set of Pareto optimal points.

Hence the equilibrium price ratio must be p∗ = π/(1− π).

The allocation is now easily computed: we know the price ratio and the
endowment, hence the budget line for the consumers. We also know that
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consumption is equal in both states. So

π

1− π
=

cA
S − 5

10− cA
R

=
cA − 5

10− cA
→ cA

S = cA
R = 5(1 + π)

and since cB
i = 15− cA

i we get cB
S = cB

R = 5(2− π).

Question 5: a) maxx {0.5u(10000(1 + 0.8x)) + 0.5u(10000(1.4− 0.8x))}

b) The FOC for this is

0.5× 0.8u′(100000(1 + 0.8x))− 0.5× 0.8u′(10000(1.4− 0.8x)) = 0

implies : u′(10000(1 + 0.8x)) = u′(10000(1.4− 0.8x))

implies : 10000(1 + 0.8x) = 10000(1.4− 0.8x)

since she is risk averse. It follows that 1 + .8x = 1.4 − .8x, and therefore
that 1.6x = 0.4, so that x = 0.25. One quarter, or 25% are invested in gene
technology.

Question 6:
i) Denote the probability with which a ticket wins by π and the prize by

P . A fair price for this lottery ticket would have to be a fraction p per dollar
of prize such that π(P − pP ) − (1 − π)pP = 0, or p = π. Let us start with
this as a benchmark case (we know that normally such a lottery would not
be accepted.) Utility maximization requires that for a gambling consumer
v(w0) ≤ πv(w0 + (1− p)P ) + (1− π)v(w0− pP ) + µi. Thus all consumers for
whom µi ≥ v(w0)−πv(w0 +(1− p)P )− (1−π)v(w0− pP ) purchase a ticket.
At a fair gamble this is

µi ≥ v(w0)− πv(w0 + (1− π)P )− (1− π)v(w0 − πP )

> v(w0)− v(π(w0 + (1− π)P ) + (1− π)(w0 − πP ))

= v(w0)− v(w0)

(the second strict inequality follows from the definition of risk aversion).
Clearly a strictly positive µ is required. Can the government make money
on this? Well, assume that the price p above is fair (p = π) and let there
be an additional charge of q. Now all consumers gamble for whom µi ≥
v(w0) − πv(w0 + (1 − π)P − q) − (1 − π)v(w0 − πP − q). While such a µi

is larger than before, it exists (for small q in any case) as long as things
are sufficiently smooth and the µi go that high. Note that those who gamble
have a high utility for it (a high taste parameter µi) in this setting. Note that
this implies that even though they lose money on average they have a higher
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welfare. (The anti-gambling arguments in public policy debates therefore
come in two flavours: (i) your gambling is against my (religious) beliefs, and
thus it ought to be banned, (ii) there are externalities: your lost money is
really not yours but should have bought a lunch for your child/spouse/dog.
Since your child/spouse/dog can’t make you stop, we will on their behalf.)

ii) Now µ is fixed. Of course, the decision to gamble will still depend
on the same inequality, namely

µ > v(w0)− πv(w0 + (1− π)P − q)− (1− π)v(w0 − πP − q).

We thus can translate this question into the question of how the right hand
side depends on w0 and how this dependency relates to the different be-
haviours of risk aversion with wealth. So, is the right hand side increasing
or decreasing with wealth, and is this a monotonic relationship? The right
hand side is related, of course, to the utility loss from going to the expected
utility from the expected value (ignoring q for a minute.) Intuitively, we
would expect the difference to be declining in wealth for constant absolute
risk aversion: Constant absolute risk aversion implies a constant difference
between the expected value and the certainty equivalent.1 Let this differ-
ence be the base of a right triangle. Orthogonal to that we have the side
which is the required distance between the two utilities. The third side must
have a declining slope as wealth increases since it is related to the marginal
utility of wealth at the certainty equivalent, which is declining in wealth by
assumption. There you go, I’d expect the utility difference must fall with
wealth.

More formally, consider the original inequality again and approximate
the RHS by its second order Taylor series expansion (that way we get first
and second derivatives, which we want in order to form rA:

v(w0)− πv(w⊕
0 )− (1− π)v(w0 − πP − q) ≈

v(w0)− π(v(w0) +⊕v′(w0) +

⊕2v′′(w0)/2)− (1− π)(v(w0)−ªv′(w0) +ª2v′′(w0)/2)

= −π ⊕ v′(w0)− π ⊕2 v′′(w0)/2(1− π)(ªv′(w0)−ª2v′′(w0)/2)

= v′(w0) [(1− π)ª (1−ªrA/2)− π ⊕ (1−⊕rA/2)] .

This looks more like it! Now note that we use ª and ⊕ as positive quanti-
ties (which are not equal: ª is larger!) Furthermore we know that (a) this
quantity must be positive and (b) that π is probably a very small number.
Now, if rA is constant then the term in brackets is constant, but of course

1Is there a general proof for that? Note that constant rA has for example the functional
form u(w) = −e−aw, for which the above is certainly true.
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v′(w) falls with w and thus the right hand side of our initial inequality (way
above) falls. Any given µ is therefore more likely to be larger than it. Thus
rich consumers participate, poor consumers don’t if we have constant abso-
lute risk aversion. If we have decreasing absolute risk aversion this effect is
strengthened. Now, since relative risk aversion is just rAw, it follows that
constant relative risk aversion requires a decreasing absolute risk aversion,
and that decreasing relative risk aversion requires an even more decreasing
absolute risk aversion. Thus in all cases the rich gamble and the poor don’t.
(Note here that they are initially rich. Since they loose money on average
they will become poor and stop gambling.)

iii) If v(w) = ln w then v′(w) = 1/w and v′′(w) = −1/w2. Therefore
rA = 1/w, with ∂rA/∂w < 0, and rR = 1. If v(w) =

√
w then v′(w) = 1/2

√
w

and v′′(w) = −w3/2/4. Therefore rA = 1/(2w) and rR = 1/2. We now know
two pieces of information: the consumers’ risk aversion to a given size gam-
ble is declining with wealth. This would, ceteris paribus make them more
likely to purchase the gamble for a constant µ (see above). But µ now is also
declining with wealth. The final outcome therefore depends on what declines
faster, and we can’t make a definite statement. (As an aside note the follow-
ing. Suppose we are talking stock market participation here. Then it might
be reasonable to assume that the utility of participating in it is increasing in
wealth, on average, and so we get higher participation by wealthier people.
Now, if the stock market on average is a bad bet we get mean reversion in
wealth, while if the stock market is on average more profitable than savings
accounts etc we get the rich getting richer. If you now run a voting model
where the mean voter wins, you get the desire to redistribute (i.e., tax the
investing and profiting rich and give the cash to those who have a too high
marginal utility of wealth to invest themselves.) Note also that progressive
taxes reduce the returns of a given investment proportional to wealth, coun-
teracting the above effect of more participation by wealthy individuals. . . .

See how much fun you can have with these simple models and a willing-
ness to extrapolate wildly?)

Question 7: This question forms part of a typical incomplete information
contracting environment. Here we focus only on the consumer’s behaviour.

a) Assume that the worker has a contractual obligation to provide an
effort level of E. Once he has signed the contract, however, he knows that his
actual effort is not observable and thus would try to shirk. Expected utility
is maximized for

e∗ = argmax{α
√

w(E)− p + (1− α)
√

w(E)− e2}.
The first order condition for this problem is −2e = 0 if e 6= E. I.e., given
the worker shirks he will go all the way (after all, the punishment does not
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depend on the severity of the crime in any way.) Thus we need to ensure
that the worker will not shirk at all, which is the case if

√

w(E) − E2 ≥
α
√

w(E)− p + (1 − α)
√

w(E), or E2 ≤ α(
√

w(E) −
√

w(E)− p). If the
wage function satisfies this inequality for all E, it will elicit the correct effort
levels in all cases.

b) Now we have a potentially variable punishment. Given some job with
contractual obligation E, the worker now will maximize expected utility and
set

e∗ = argmax{α
√

w(E)− p(E − e) + (1− α)
√

w(E)− e2}.
The FOC for this problem is αp′(·)(2

√

w(E)− p(E − e))−1− 2e = 0. (There
are also second order conditions which need to hold!) This implies that the
worker will play off the cost of shirking against the gains from doing so. We
need to make sure that this equation is only satisfied for e∗ = E, in which
case he “voluntarily” chooses the contracted level. This clearly requires a
positive p′(). In particular, αp′(0)(2

√

w(E))−1 − 2E = 0. Note: We could
also vary the detection/supervision probability and make α depend on E.
Then we get e∗ = argmax{α(E)

√

w(E)− p + (1 − α(E))
√

w(E) − e2}. As
in (a), if the worker deviates he will go all the way here. So the problem is
similar to (a), only the wage schedule is now different since α(E) can also
vary now. What this shows us is that we tend to want a punishment and a
detection probability which both depend on the deviation from the correct
level. (This is going to be a question about the technology available: some
technologies may be able to detect flagrant shirking more readily than slight
shirking.)

c) What this seems to indicate is that we would like to make punish-
ments fit the crime. (So for example, if the punishment for a hold-up with a
weapon is as severe as if somebody actually gets shot during it, then I might
as well shoot people when I’m at it and I think that helps (and if it does not
increase the effort the police put into finding me.)) Furthermore, if detection
is a function of the actual effort level (the more you fudge the books the more
likely will you be detected) then we need lower punishments, ceteris paribus,
since the increasing risk will provide some disincentive to cheat anyways.

Question 8:
a) Let CB denote the coverage purchased for bad losses, and CM the

coverage for minor losses. Zero profits imply that the premiums pB and pM

for bad and minor losses, respectively, are pB = π/5 and pM = 4π/5. Hence
the consumer’s expected utility maximization problem becomes

maxCB ,CM

{

(1− π)u(W − pMCM − pBCB)+

π(
1

5
u(W − pMCM − pBCB + CB −B)+
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4

5
u(W − pMCM − pBCB + CM −M))

}

The first order conditions for this problem are

−pM(1− π)u′(n)− pM
π

5
u′(b) + (1− pM)

4π

5
u′(m) = 0

−pB(1− π)u′(n) + (1− pB)
π

5
u′(b)− pB

4π

5
u′(m) = 0

Using the fair premiums this simplifies to

−(1− π)u′(n)− π

5
u′(b) +

(

1− 4π

5

)

u′(m) = 0

−(1− π)u′(n) +
(

1− π

5

)

u′(b)− 4π

5
u′(m) = 0

Hence
(

1− 4π

5

)

u′(m)− π

5
u′(b) =

(

1− π

5

)

u′(b)− 4π

5
u′(m)

and thus u′(b) = u′(m), which finally implies that u′(n) = u′(b) = u′(m) and
therefore that

0 = CB −B = CM −M.

As expected, the consumer buys full insurance for each accident type sepa-
rately.

b) Now only one coverage can be purchased, denote it by C, and will
be paid in case of either accident. Zero profits imply that the premium
p is p = π. Hence the consumer’s expected utility maximization problem
becomes

maxC

{

(1− π)u(W − pC)+

π(
1

5
u(W − pC + C −B)+

4

5
u(W − pC + C −M))

}

The first order condition for this problem is

−p(1− π)u′(n) + (1− p)
π

5
u′(b) + (1− p)

4π

5
u′(m) = 0

Using the fair premium this simplifies to

u′(n) =
1

5
u′(b) +

4

5
u′(m)
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and hence either

u′(b) > u′(n) > u′(m) or u′(b) < u′(n) < u′(m).

Thus either W − B + (1 − π)C < W − πC < W −M + (1 − π)C or W −
B + (1 − π)C > W − πC > W − M + (1 − π)C, but this implies either
−B + 1C < 0 < −M + 1C or −B + 1C > 0 > −M + 1C. Since B > M
by definition we obtain that B > C > M , the consumer over insures against
minor losses, and is under insured against big losses.

Question 9: From Figure 3.7 in the text, we can take the consumers’ budget
line to be the line from the risk free asset point (the origin in this case) to a
tangency with the efficient portfolio frontier. Now this tangency occurs where
the margin is equal to the average, so that

√
σ − 16/σ = (2

√
σ − 16)−1. That

means that the market portfolio has 2(σ − 16) = σ or σ = 32. Therefore
µ = 4. The slope of the portfolio line thus is 4/32. For an optimal solution
the consumer’s MRS must equal the slope of the portfolio line. For the two
consumers given the MRS is σ/32 and σ/96. Thus the optima are σ =
4, µ = 1/2 and σ = 12, µ = 3/2. As expected, the consumer with the higher
marginal utility for the mean will have a higher mean at the same prices (and
given that both have the same disutility from variance.)

Question 10: The asset pricing formula implies that the expected return of
the insurance equals the expected risk-free return less a covariance term. If
insurance has a lower expected return than the risk-free asset, this covariance
term must be positive. In the denominator we have the expected marginal
utility, guaranteed to be positive. Thus the numerator must be positive. This
means that Cov(u′(w), Ri) > 0. But since u′′(w) < 0 this implies that the
covariance between w and Ri is negative, that is, if wealth is low the return
to the policy is high, if wealth is high, the return to the policy is low. That of
course is precisely the feature of disability insurance which replaces income
from work if and only if the consumer is unable to work.

Question 11:
1) False. The second order condition would indicate a minimum as

demonstrated here: maxC{πu(w−L−pC +C)+(1−π)u(w−pC)} has FOC
π(1−p)u′(w−L+(1−p)C)−p(1−π)u′(w−pC) = 0. The second order condi-
tion for a maximum is π(1−p)2u′′(w−L+(1−p)C)+p2(1−π)u′′(w−pC) ≤ 0.
Note that 1 ≥ π, p ≥ 0, so that the SOC requires u′′(·) to be negative for at
least one of the terms. A risk-lover has, by definition, u′′(·) > 0.

2) Uncertain. We can draw 2 diagrams to demonstrate. In both we have
two intersecting budget lines, one steeper, one flatter. The flatter one corre-
sponds to the initial situation. They intersect at the consumer’s endowment.
Since the consumer is a borrower, the initial consumption point is below and
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to the right of the endowment on the initial budget. The indifference curve
through this point is tangent to this budget. It may, however, cut the new
budget (so that the IC tangent to the new budget represents a higher level
of utility) or lie everywhere above it (in which case utility falls.)

3) True. Apply the following positive monotonic transformations to the
first function: −2462, ×12, collect terms in one logarithm, take exponential,
take the 9000th root. What you get is the second function.

4) True. A risk averse consumer is defined as having u(
∫

xg(x)dx) >
∫

u(x)g(x)dx. Let the consumer have initial wealth w and suppose he could
participate in a lottery which leads to a change in his initial wealth by x, dis-
tributed as f(x). Suppose the payment for this lottery is p. If this payment
is equal to the expected value of the lottery then the consumer will not have
a change in expected wealth, but will face risk. Thus by definition he would
not buy this lottery. If the payment is less, then the expected value of wealth
from participating in the lottery exceeds the initial wealth. Depending on by
how much, the consumer may purchase. A risk loving consumer, of course,
would already buy at when the expected net gain is zero. (This argument
could be made more precise, and you should try to put it into equations!)

5) False. The market rate of return is 15%. Gargleblaster stock has a
rate of return of (117− 90)/90 = 30%. This violates zero arbitrage.

6) True. All consumers face the same budget line in mean-variance
space. At an interior optimum (and assuming their MRS is defined) they all
consume on this line where the tangency to their indifference curve occurs.
This may be anywhere along the line, depending on tastes, but the slope is
dictated by the market price for risk.

Question 12:
a) Since workers work as bus driver and at a desk job we require

2
√

40000 = α2
√

44100− 11700 + (1− α)2
√

44100

Therefore

α =

√
44100−

√
40000√

44100−
√

32400
=

210− 200

210− 180
=

1

3
.

b) Since workers work on oil rigs and at a desk job we require

2
√

40000 = 0.5× 2
√

122500− Loss + 0.5× 2
√

122500.

Thus 400 =
√

122500− Loss + 350 and hence 50 =
√

122500− Loss or
Loss = 120000.

c) At fair premiums the workers will fully insure. That is, they suffer
their expected loss for certain. For a bus driver the expected loss is 11700/3 =
3900. Thus the bus driver wage must satisfy 2

√
40000 = 2

√
w − 3900 and
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hence it is $43900. For the oil rig worker the expected loss is $60000, and
their wages will fall to $100000 under workers compensation. Note the the
condition that workers take all jobs together with a fixed desk job wage fixes
the utility level in equilibrium for workers. However, the wage premium for
risky jobs will not have to be paid: the wages of the risky occupations fall
which benefits the firms in those industries by lowering their wage costs.
(This is why industries are in favour of workers’ compensation.)

d) The average probability of an accident now is 0.4× 0.5+0.6× 1/3 =
0.4. If we were to use this as a fair premium (but see below!) this premium is
too high for bus drivers, who will under insure, and too low for oil rig workers,
who will over insure. Indeed, the bus drivers will choose to buy insurance Cb

such that 6
√

44100− 0.4Cb = 8
√

32400 + .6Cb (Take the first order condition
for maxCb

{(1/3)
√

32400 + 0.6Cb +(2/3)
√

44100− 0.4Cb}, bring the
√

from
the denominator into the numerators and loose the 1/30 on both sides.) Thus
we require 9(44100−0.4Cb) = 16(32400+0.6Cb), or Cb = 10(9×44100−16×
32400)/(6×16+4×9) = −9204. What does this mean? It means that the bus
drivers would like to bet on themselves having an accident buying negative
amounts of insurance! (The ultimate in under insurance!) Note that the
governments expected profit from bus drivers is−0.4×9204/3+1.2×9204/3 =
2454.40 > 0.

The oil rig workers would need to solve
maxCo

{
√

2500 + 0.6Co +
√

122500− 0.4Co}, which leads to
3
√

122500− 0.4Co = 2
√

2500 + 0.6C and thus Co = 182083.33. Note that
the govt looses money on them, since (0.5 × 0.4 − 0.5 × 0.6) × 182083.33 =
−18208.30.

Overall then the govt makes losses of 5810.68N , where N is the number
of workers in risky occupations. At the old wages both groups are better
off (and thus there would be an influx of desk workers and a reallocation
towards oil rigs.) In order to break even the insurance rates would have to
be changed, in particular raised. It also seems that the govt would ban the
purchase of negative insurance amounts. In which case the bus drivers would
find it optimal to buy no insurance, and then premiums would have to be 0.5
for the govt to break even. This would be deemed unjust by all involved, and
so in practice the govt forces all workers to buy a fixed amount of insurance!

In principle we could compute equilibrium wages if we treat the insur-
ance purchase as a function of the wage. So, for example we know from the
above that Cb(w) = 10(9×w−16×(w−11700))/(6×16+4×9). We then solve
for s

√
40000 = (2/3)

√

w + (1− 0.4)Cb(w) + (4/3)
√

w − 11700− 0.4Cb(w).
The details are left to the reader.
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The important point here is that it is important to charge the correct
premiums. If that is not done things will work out funny. That in turn leads
to real life plans which do not allow a choice — workers have to insure, the
amount is dictated (often capped, that is, the insured amount is a function
of the wage up to a maximum.) You can see that such plans can be quite
complicated and that it can be quite complicated to figure out who would
want to do what, what the distributional implications are, etc.

Question 13: Let us translate the question into notation: We are to show

that
u′(c1)

u′(c2)
= k if

c2

c1

= λ if the function u(·) satisfies
u′′(w)w

u′(w)
= a, ∀w.

u′(c1)

u′(c2)
= k and

c2

c1

= λ =⇒ u′(c1) = k(λ)u′(λc1).

If the left and right hand side of that last expression are identical functions,
then their derivatives must equal: u′′(c1) = k(λ)λu′′(λc1), but we know that
k(λ) = u′(c1)/u

′(λc1), so that

u′′(c1) =
u′(c1)

u′(λc1)
λu′′(λc1) =⇒ u′′(c1)

u′(c1)
= λ

u′′(λc1)

u′(λc1)

Thus the MRS is constant for any consumption ratio λ if

u′′(c1)c1

u′(c1)
=

u′′(λc1)λc1

u′(λc1)
∀λ,

which is constant relative risk aversion.

7.4 Chapter 6

Question 1: A 3-player game in extensive form comprises a game tree, Γ,
a payoff vector of length three for each terminal node, a partition of the set
of non-terminal nodes into player sets S0, S1, S2, S3, a partition of the player
sets S1, S2, S3 into information sets. Further, a probability distribution for
each node in S0 over the set of immediate followers and for each SJ

i an index
set IJ

i and a 1-1 mapping from Ij
i to the set of immediate followers of the

nodes in Sj
i . Any carefully labelled game tree diagram will do. It does not

even have to have nature (i.e., S0 could be empty.)

Question 2: Perfect recall is when each player never forgets any of his own
previous moves (so that for any two nodes within an information set one
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may not be a predecessor of the other and any two nodes may not have a
common predecessor in another information set of that player such that the
arc leading to the nodes differs) and never forgets information once known (so
that any two nodes in a player’s information set may not have predecessors
in distinct previous information sets of this player.) Counter examples as in
the text, or any game which violates these requirements.

Question 3: Yes, any finite game has a Nash equilibrium, possibly in mixed
strategies. This follows from the Theorem we have in the text. The game
therefore will also have a SPE (they are a subset of the Nash equilibria, but
keep in mind that the condition of subgame perfection may have no ‘bite’,
in which case we revert to Nash.)

Question 4: Player 1 has no weakly dominated strategies since
u1(D,L, Left) > u1(U,L, Left) but u1(D,R,Left) < u1(U,R, Left), while
u1(C,L,Right) > u1(U,L,Right). Player 3 does also not have a weakly
dominated strategy. Depending on the opponents’ moves he gets a higher
payoff sometimes in the left and sometimes in the right matrix. Player 2 does
have weakly dominated strategies: Both L and R are weakly dominated by
C.

This does not leave us with a good prediction yet, aside from the fact
that 2 can be argued to play C. However, if we now consider repeated
elimination we can narrow down the answer to what is also the unique Nash
equilibrium in pure strategies in this case, (D,C,Right).

To find mixed strategy Nash we assign probabilities to the strategies
for players, so let µ1 = Pr(U), µ2 = Pr(C), γ1 = Pr(L), γ2 = Pr(R), and
α = Pr(Left). We can then compute the payoffs for players for each of their
pure strategies. So for example u1(U, γ, α) = α(γ1 + 2γ2 + (1 − γ1 − γ2) +
(1− α)(2γ1 + 4γ2 + 2(1− γ1 − γ2)). We then can ask, when is player 1, say,
actually willing to mix? Only if the payoff from the pure strategies in the
support of the mixed strategy are equal, so that the player does not care.

Question 5: This one is made easier by the fact that strategy R is (strictly)
dominated, so that it will never be used in any mixed strategy equilibrium
(or indeed any equilibrium.) Hence this is really just a 2× 2 matrix we need
to consider. Let α = Pr(U) and β = Pr(L), so that Pr(C) = 1 − α and
Pr(C) = 1−β. Then for player 1 to mix we require β+4(1−β) = 3β+2(1−β),
hence 2 = 4β, and hence β = 0.5. So if player 2 mixes with this probability
then player 1 is indifferent between his two strategies. Now look at player
2: For 2 to be indifferent between the two strategies L and C we require
4α + 2(1 − α) = 2α + 3(1 − α). Hence 3α = 1 and thus α = 1/3. Thus the
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mixed strategy Nash equilibrium is ((1/3, 2/3), (1/2, 1/2)). Note that the
game has no pure strategy Nash equilibria.

Question 6: This is a two player game (the court is not a strategic player
and does not receive any payoffs.) The most natural extensive form for such
a situation is probably as in the game tree on the next page.
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(10, 0) (12, 2) (5, 10) (17, 2)

Here it is important to note that ph > pl, reflecting the fact that if low
care is taken the accident probability is higher. I have arbitrarily assigned
payoffs which satisfy the description. High level of care costs the railway 5,
accidents impose a cost of 8 on both parties, legal costs are 2 for each party.

Let us try and find the Nash equilibrium of this game. As an exercise
let us first find the strategic form:

R\T Sue NotSue

high (20− 10pl, 10− 10pl) (20− 8pl, 10− 8pl)

low (25− 20ph, 10) (25− 8ph, 10− 8ph)

Note that low strictly dominates high for the railway if 0.5 > (2ph −
pl) while high strictly dominates low if ph − pl > 5/8. In those cases the
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Nash equilibria are (low, Sue) and (high,NotSue), respectively. Otherwise
there will be a mixed strategy equilibrium. Let α be the probability with
which the railway uses the high effort level. The town is indifferent iff its
expected payoffs from the two strategies are the same, that is, if 10−10αpl =
10 − 8ph + 8α(ph − pl). This is the case if α = 4ph/(4ph + pl). For lower
α it prefers to Sue, for higher α it prefers to NotSue. Letting β denote
the probability with which the town sues, the railway expects to receive
20− 8pl − 2βpl from high and 25− 8ph − 12βph from low. It is indifferent if
β = (5− 8(ph− pl))/(12ph− 2pl). So the mixed strategy Nash equilibrium is

(α, β) =

(

4ph

4ph + pl

,
5− 8(ph − pl)

12ph − 2pl

)

if ph −
5

8
> pl > 2ph −

1

2
.

Question 7: There are two ways to draw this game. We can have nature
move first and then Romeo (who does not observe nature’s move.) Or we
can have Romeo move first, and then nature determines if the move is seen.
The game tree for the first case is as drawn below.
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(30,50) (1,1) (5,5) (50,30) (30,50) (1,1) (5,5) (50,30)

A strategy vector in this game is (sR, (s1
J , s2

J , s3
J)). Subgames start at

information sets J1 and J2, the only other subgame is the whole tree. In the
subgame perfect equilibrium Juliet therefore is restricted to (S,M, ·). Let α
denote Romeo’s probability of moving S, and β Juliet’s (in J 3.) Romeo’s
(expected) payoff from S is 30p + (1 − p)(30β + 1 − β) and his payoff from
M is 50p + (1 − p)(5β + 50(1 − β)). The β for which he is indifferent is
(49 − 29p)/(74(1 − p)). Note that this is increasing in p and that β = 1 if
p = 5/9! Juliet has payoffs of 50α+5(1−α) and α+30(1−α) from moving S
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and M , respectively, in J3. Hence she is indifferent if α = 25/74. Of course,
pure strategy equilibria may also exist, and we get the SPE equilibria to be

(

25

74
,

(

S,M,
49− 29p

74(1− p)

))

, (S, (S,M, S)) , (M, (S,M,M)) if p <
5

9
.

Note that (S, (S,M, S)) requires that 30 > 50p + 5(1 − p), or p < 5/9 also.
(M, (S,M,M)) requires that 50 > 30p+(1−p), or p < 49/29, which is always
true. What if p > 5/9? In that case the equilibrium in which the outcome
is coordination on S (preferred by Juliet) does not exist, and neither does
the mixed strategy equilibrium. Hence the unique equilibrium if p ≥ 5/9 is
(M, (S,M,M)). Romeo can effectively insist on his preferred outcome.

Question 8: Each firm will

maxqi

{

(
∑

j 6=i

qj + qi − 10)2qi − 0qi

}

.

The FOC for this problem is

2(
∑

j 6=i

qj + qi − 10)qi + (
∑

j 6=i

qj + qi − 10)2 = 0

Hence if
∑

j 6=i qj + qi − 10 6= 0 we require

2qi + (
∑

j 6=i

qj + qi − 10) = 0

and get the reaction function qi = (10−
∑

j 6=i qj)/3. With identical firms we
then know that in equilibrium qj = qi, so that

∑

j 6=i qj = (n − 1)qi. Hence
3qi = 10 − (n − 1)qi and we get that qi∗ = 10/(n + 2) ∀i. Total market
output then is 10n/(n + 2). Note that total market output approaches 10
from below as n gets large. Market price for a given n is 400/(n+2)2, which
approaches zero as n gets large. (Note that the marginal cost is zero and
hence the perfectly competitive price is zero!)

Question 9: In the first instance the sellers can only vary price. To clarify
ideas, let us focus on two prices only (as would be needed for a separating
equilibrium.) The game then is as depicted below. We are to show that no
separating equilibrium exists. If it did, it would have to be the two prices as
indicated, where one firm charges one price (presumably the high quality firm
charging the higher price) the other another. But given that, the consumer
knows (in equilibrium) which firm produced the product. It is easy to see that
the low quality firm would deviate to the higher price (being then mistaken
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for the high quality firm so that the consumer buys) since costs are unaffected
by such a move, but a higher price is received.

At this point the remainder is non-trivial and left for summer study! The
key is that the consumer now has an information set for each price-warranty
pair, and that there are two nodes in it, one for each type of firm.

Question 10: What was not stated in the question was the fact that each
consumer buys either one or no units. Each buyer purchases a unit of the
good if and only if the price is below the valuation of the buyer. Hence total
market demand is given by the number of buyers with a valuation above p,
or 1−F (p). F (v) is the cumulative distribution for the uniform distribution
on [0, 2]. Since the pdf for the uniform distribution on [0, 2] is 0.5, we have
F (v) =

∫ v

0
0.5dt = 0.5v. Hence market demand is 1−0.5p and inverse market

demand is 2(1−Q).

A Cournot equilibrium is nothing but a Nash equilibrium in the game
in which firms simultaneously choose output levels. Hence firm 1 solves

maxq1
{2(1− q1 − q2)q1 − q1/10}

which leads to FOC 2(1− q1− q2)−2q1−1/10 = 0 and the reaction function
q1(q2) = 19/40− q2/2.

Firm 2 solves
maxq2

{

2(1− q1 − q2)q2 − q2
2

}

which leads to FOC 2(1− q1 − q2)− 2q2 − 2q2 = 0 and the reaction function
q2(q1) = 1/3− q1/3.

The Nash equilibrium then is (q1, q2) = (37/100, 21/100). Market price
is 42/50. Profits for the two firms are 74×37/10000 for firm 1 and (82×21−
212)/10000 for firm 2, so that joint profit is (74× 37 + 82× 21− 212)/10000.
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In the Stackelberg leader case we consider the SPE of the game in which
firm 1 chooses output first and firm 2, after observing firm 1’s output choice,
picks its output level. Firm 1, the Stackelberg leader, therefore takes firm
2’s reaction function as given. Thus firm 1 solves

maxq1

{

2

(

1− q1 −
(

1

3
− q1

3

))

q1 − q1/10

}

The FOC for this is 4(1 − 2q1)/3 − 1/10 = 0 and hence q1 = 37/80. Thus
q2 = 43/240. Market price is 86/240. Profits for the two firms are (62 ×
37)/(240×80) and 43×43/2402. Joint profit thus is (186×37+43×43)/2402.

Joint profit maximization would require that the firms solve

maxq1,q2

{

2(1− q1 − q2)(q1 + q2)− q1/10− q2
2

}

.

This has FOCs

2(1− q1 − q2)− 2(q1 + q2)− 1/10 = 0

2(1− q1 − q2)− 2(q1 + q2)− 2q2 = 0

so that we know that 2q2 = 1/10 or q2 = 1/20. Hence 2(1 − q1 − 1/20) −
2(q1 + 1/20)− 1/10 = 0 and 2− 4q1− 3/10 = 0 and q1 = 7/40. Market price
then is 2(31/40). Joint profits are 2(31/40)(9/40) − 8/400. This cannot be
attained as a Nash equilibrium because neither output level is on the firm’s
reaction function, and only output levels on the reaction function are, by
design, a best response.


