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1 Introduction 
This essay is structured such that each heading is a specific claim related to quantitative 
descriptions of brain function.  Any subheadings under a given heading are intended to 
provide additional considerations or details in support of the heading.  While this does 
not provide for typical, smooth, reading of the paper, it serves to make the argument 
clearer and can shorten reading time, as the content of any “obviously true” heading can 
be skipped. 

The word ‘computation’ is used in a liberal and definitional sense.  I am using the liberal 
sense in the title (the sense typical of cognitive science usage, which means something 
like a ‘transformation of representations’).  However, I am using the definitional sense, 
from computational theory (i.e. Turing Machine equivalence) in the remainder of the 
essay. I will generally replace ‘computation in the brain’ in the first sense with ‘a 
quantitative description of brain function’ for clarity.    

In brief, the argument I present here is:  
1. There are four relevant kinds of quantitative description of brain function: 

computational, dynamical, statistical, and control theoretic 
2. We ought to provide the best quantitative description of brain function 

3. A good description of brain function provides for simple state mappings, and useful 
decompositions that account for variability 

4. A good description in the brain sciences explains by positing mechanisms that 
support interventions 

5. Computation theoretic descriptions do not meet these criteria well 
6. Conclusion 1: Therefore, computation theoretic descriptions are not good descriptions 

(from 3-5) 
7. Control theoretic descriptions meet these criteria better than any of the other 

alternatives 
8. Therefore, control theoretic descriptions are the best descriptions (from 1, 7) 

9. Conclusion 2: Therefore, control theoretic descriptions are the kind of quantitative 
description we ought to provide (from 2, 8) 

One clarification is important: conclusion 2 does not rule out the other descriptions as 
useful.  Rather, it suggests that other descriptions are essentially heuristics for temporarily 



stating the description.  That is, ultimately, other descriptions should be translated into a 
unifying description of brain function stated with control theoretic constructs.   

2 There are four kinds of quantitative description of brain function 
I begin with some considerations regarding how quantitative descriptions relate to 
physical systems in general, and then turn to which quantitative descriptions are relevant 
for understanding brain function. 

2.1 Different quantitative descriptions are better for different classes of 
phenomena 
I do not worry about how quantitative descriptions are individuated (i.e., why statistical 
descriptions are different from dynamical descriptions). 

2.1.1 Physical systems can have multiple quantitative descriptions 
In most cases, what we identify as a physical system (e.g. a gas; a computer chip) can be 
described using different quantitative descriptions (e.g. statistical or Newtonian 
mechanics; computational theory or circuit theory).  If we are trying to argue for the best 
description of some physical system, we must have a means of picking between these 
possible descriptions. 

2.1.2 Quantitative descriptions have a natural class of physical phenomena 
that they describe 
Notably, many descriptions are of the same mathematical class (e.g. both computational 
and circuit descriptions are algebraic), so it is not their mathematical properties that 
distinguish them. 
Instead, it is the agreed upon mapping between the mathematics and the physical world 
which aligns with the different kinds of quantitative descriptions available.  So, in circuit 
theory, variables are measurable properties like resistance, current, and voltage, whereas 
in computational theory variables are easily distinguished system states, like low/high 
voltage, or open/closed (mechanical) gates.  

In essence, this is why they are a quantitative descriptions of something: there is a defined 
mapping from the description to physical states.  Such mappings are natural (i.e. simple, 
straightforward, easy for us to understand) for the class of phenomena that they are 
explicitly defined over (and to the extent those definitions are specific).  For instance, 
circuit descriptions are natural over the class of voltages, currents, etc. They are no more 
specific (i.e. picking out material properties) or less specific (i.e. picking out non-electrical 
properties like fluid flow). 
These considerations result in the unsurprising conclusion that quantitative descriptions 
are natural for the class of physical systems they are explicitly defined to be descriptions 
of.  



2.1.3 Quantitative descriptions are implementation independent, but to 
differing degrees 
As is again evident from the computation versus circuit descriptions, some quantitative 
descriptions (e.g. circuit theory) apply only to a subclass of others (e.g. computational 
theory).  As a result, computational theory is more implementation independent than 
circuit theory.  Notice also that circuit theory is independent of many specific material 
properties of potential circuit elements, for which chemical descriptions may be most 
natural. 

2.1.4 The goodness of a description varies depending on the phenomena of 
interest 
I have more to say on what constitutes a good description in section 3.  These 
considerations can be preliminary given an agreed upon characterization of goodness. 
If the agreed upon notion of goodness is partly psychological (e.g. relies on simplicity), 
and the natural class for a description is as well (e.g. also relying on simplicity), then the 
goodness of a description will vary depending on the natural class of phenomena in 
question.  A description will be best for the phenomena which fall most directly in its 
natural class. 

Just to be clear, this principle does not result in unbridled relativism: so long as we have a 
consistent measure of goodness across all phenomena, there will be one description which 
is best for a given class. 

2.2 There are four kinds of quantitative description relevant to brain function 
Here, I briefly describe each approach, indicate the class of systems it is most natural for, 
and describe its type of implementation independence. 

2.2.1 Computational  
Computational descriptions adopt computational theory which characterizes systems using 
Turing languages.  Such languages are able to describe any Turing Machine computable 
function.  I take this to have historically been the dominant approach in cognitive science. 

2.2.1.1 The natural physical phenomena for computational descriptions are those that 
are easily discretizable  
What I have called Turing languages assume a mapping between the description in the 
language and distinct physical states.  The paradigm case of this is the high/low voltages 
of silicon transistors mapped to 1s and 0s in the description.  In general, any physical 
system which has easily distinguished (i.e., discrete in both space and time) states can be 
well-described by such languages.  Often such systems are engineered. 

2.2.1.2 Computational descriptions are highly implementation independent 
Turing Machines are a powerful computational description precisely because they are 
completely implementation independent.  Much has been made of this by functionalists in 
cognitive science.  Notably, this independence means that certainty of the state value is 



generally assumed (i.e. that it is either 1 or 0).  In short, randomness, or noise is typically 
ignored. 

2.2.2 Dynamical 
Dynamical systems theory, as a mathematical theory is extremely general (and arguably 
equivalent to control theory).  However, in the context of cognitive systems, a number of 
researchers have championed the ‘dynamical systems theory of mind,’ which I refer to as 
DST.  DST uses the mathematical theory, but adds additional assumptions when applying 
it to cognitive systems.  Given the equivalence between the mathematical theory and 
control descriptions, I will discuss DST unless otherwise noted. 

2.2.2.1 The natural physical phenomena for DST dynamical descriptions is simple 
phenomena governed by physical laws 
Simplicity is a stated assumption of DST theorists in cognitive science: van Gelder and 
Port (1995) argue that DST theorists must “provide a low-dimensional model that provides 
a scientifically tractable description of the same qualitative dynamics as is exhibited by the 
high-dimensional system (the brain).” This constraint of low-dimensionality is severe, and 
limits the complexity of such descriptions to simple systems.  However, such systems, 
being continuous, are strictly more computationally powerful than TMs. 

2.2.2.2 DST dynamical descriptions are implementation independent  
In DST, the low-dimensional descriptions are implementation independent, because they 
rely on ‘lumped parameters.’ Such parameters are high-level, non-physical parameters 
necessary to match dynamics, generally uninformed by implementational constraints. 

2.2.3 Statistical 
Statistical descriptions describe the probability of various measurable states of the system 
given other known states of the system.  Such models usually have as their central goal the 
prediction of data.  

2.2.3.1 The natural physical phenomena for statistical descriptions is complex 
phenomena with unknown mechanisms  
Complex systems, in virtue of their complexity, often have many unknown or undescribed 
interactions between system components.  As a result, starting from given initial 
conditions often maps to a wide possibility of subsequent states. Statistical models are 
ideal for describing systems of this kind when prediction is of the utmost importance (e.g. 
in data analysis).  Notably, not describing mechanisms explicitly generally has the cost of 
making novel interventions difficult to predict. 

2.2.3.2 Statistical descriptions are highly implementation independent 
Statistical models focus on describing the regularities in the data, and hence are silent with 
respect to the particular physical implementation.  In essence, these descriptions will not 
change if only implementation changes (and statistical properties do not).  Another way of 
describing this tendency is by noting that the model is often highly specific to a given data 



set.  This is consistent with implementation independence because implementation and the 
values of measured system states (data) are usually tightly coupled, though they do not 
have to be. 

2.2.4 Control theoretic 
Control theoretic descriptions describe the dynamics of a system through its state space.  
Usually, the notions of ‘controller’ and ‘plant’ are used to describe the system. 

2.2.4.1 The natural physical phenomena for control theoretic descriptions are those with 
directed dynamics 
Because of the usual distinction between plants and controllers, control theoretic 
descriptions typically apply to systems in which one part of the system directs the 
dynamics of another part of the system.  Control theory uses the general tools of 
mathematical dynamical systems theory. 

2.2.4.2 Control theoretic descriptions vary between implementation independent and 
implementation specific 
Standard (i.e. general mathematical) dynamical analyses are performed in a manner which 
precisely removes the physical uniqueness of the problem (e.g. through non-
dimensionalization, and using normal form analysis).  In this sense, many such 
descriptions are intentionally implementation independent.  However, they are so 
explicitly by design, not by the nature of the description.  As a result, the original 
equations that are often parametrically tied to specific physical instantiations (e.g. a 
circuit, or a circuit in silicon, etc.) can also be used as a system description.  In such a 
case, the description is highly implementation specific. 

Thus control theory can describe implementation independent controllers, while also being 
crucial for describing particular implementations of those controllers in a given medium. 

2.3 Some of these quantitative descriptions are strictly equivalent 

2.3.1 Control theoretic descriptions are equivalent to dynamical and 
statistical descriptions 
This is merely the mathematical observation that all of these approaches employ methods 
defined over the reals, and have no evident restrictions on the functions that they can 
compute in that domain (the restriction of unity integrals on statistical descriptions, is not 
significant as it is still uncountable).  This makes all of these descriptions strictly more 
powerful than TMs. 

2.3.2 Computational descriptions are strictly weaker than the other options 
TM languages are strictly weaker than those defined over the continuum (Siegelmann, 
1995).  Finite state automata (FSAs) are weaker still. 



2.3.3 Brain function can be described by any of these candidates 
As I have argued in detail elsewhere (Eliasmith, 2000), given the ubiquitous presence of 
noise in the brain, only a finite amount of information can be passed between the outside 
world and brain states, or between brain states.  As a result, TMs are sufficient for 
describing the information processing properties of the brain.  In fact, FSAs are also 
sufficient, as the difference between them and TMs is that TMs have infinite resources 
(tape and time).  Brains clearly do not share that luxury.  So, FSAs can describe all brain-
computable functions. 

Since FSAs can describe all brain-computable functions, and since all of the considered 
descriptions are strictly more powerful than FSAs, all of the considered descriptions can 
describe brain function.  Hence, brain function is the kind of phenomena that has multiple 
descriptions (see section 2.1.1), so we must turn to other criteria to determine which is the 
best. 

2.4 There are no other relevant candidates 
There are no other candidates for two reasons: 1) possible candidates are equivalent to 
what has been discussed; or 2) possible candidates have not been shown to be generally 
useful to the description of cognitive systems.  Examples of the first type are most logics 
(equivalent to computational descriptions) and quantum theory (equivalent to continuous 
descriptions).  Examples of the second type include quantum theory (despite the supposed 
theories of consciousness, no quantum explanations of cognitive system function for even 
simple tasks have been offered) and hybrid descriptions.  I am not aware of serious, non-
interim hybrid descriptions of cognitive systems.  In general, hybrid descriptions are 
temporary because they violate the general assumption that a general description should 
be unified.  Detailed discussion of the justification for placing weight on unification are 
beyond the scope of this paper.  Suffice it note that if this is not assumed a set of non-
arbitrary rules for determining when to use which (sub)description must also be offered.  I 
will assume throughout that descriptive unification is a defining feature of a good 
description. 
A related concern is that perhaps different descriptions will be applicable at different 
‘levels’ of explanation.  So while no one theory will be hybrid, our over-arching theory of 
cognition will have to have very different kinds of characterization, depending on the 
explanation of interest.  There are a number of ways to allay this concern.  First, we must 
be clear what we mean by ‘levels,’ and systematically determine when to switch 
descriptions.  My suspicion is that a more satisfying approach is to determine how a 
unified description can relate these intuitive levels to one another, as the former approach 
is likely to meet with little success.  Second, it is perfectly reasonable to introduce 
simplifying assumptions within a theory, if those assumptions are taken to be appropriate 
given a particular kind of explanation.  This is what happens, perhaps, when we employ 
Newtonian mechanics, although we may not take it to be as strictly accurate as Einsteinian 
mechanics.  Nevertheless, that employment is justified only insofar as we know how to 
relate these two descriptions.  I take it an analogous constraint should apply to cognitive 
theories.  This is one I do not consider in detail here, but am confident that the cited 
examples suggest control theory is most amenable to this kind of incorporation of 
simplifying assumptions across a wide variety of ‘levels’. 



It is perhaps worth re-emphasizing here that these considerations do not rule out providing 
interesting descriptions that are not control theoretic.  Perhaps, for instance, a 
computational decomposition at a high-level gets something essentially right about 
cognitive systems.  The point is that such isolated successes are not sufficient for adopting 
that kind of description in general.  And further, that such descriptions should be replaced, 
if possible, by descriptions that do not isolate their successes, but apply widely.  Much of 
the argument below suggests that control theoretic descriptions are in the best position to 
realize that possibility – and the specific examples suggest such descriptions, to some 
extent, already have. 

3 A good description of brain function provides for simple state 
mappings and decompositions, which account for variability 

Because each of the considered quantitative descriptions is both general and theoretically 
powerful enough to describe brain function, we must adjudicate their applicability via 
other criteria.  Here I argue for several criteria that constitute a good description of brain 
function.  This is not intended to be ‘good in all possible senses’ (see section 4.3), but 
rather ‘good for successful cognitive scientific theories’.   

3.1 A good description provides a simple mapping from data to description 
states 

In order for a description to be useful, it must be practical to map between the states 
identified by the description, and the means of identifying such states within the relevant 
sciences.  The simpler such a mapping is, the better (because more practical) the 
description becomes.  The mapping is more practical because it is evident how new 
information can be integrated with, or challenges, the currently accepted description. 

If it is difficult, or impossible, to determine how new evidence informs the theory we 
have described quantitatively, then the theory itself is lacking.  This, of course, is to be 
evaluated relative to other offered quantitative theories. 

3.2 A good description provides a clear decomposition of the system 
Ideally, a quantitative description can act as a guide to a useful means of decomposing 
the system. Because of the complexity of neural systems, decomposition is an essential 
explanatory strategy (Bechtel and Richardson, 1993). The more specific and effective the 
decomposition for explanatory progress, the better the description. 

3.3 A good description accounts for variability 
If the type of system to which the description applies is a broad, variable class (as in the 
case of neural systems), then descriptions able to explicitly incorporate this variability 
will be better than those that do not.  Characterizing the precise form and effect of the 
variability is crucial in the case of complex systems, which generally have significant 
amounts of unexplained (sometimes unexplainable) behaviour.  In addition, the precise 
nature of the variability can be highly sensitive to implementational constraints.  Thus 



descriptions sensitive to implementation are often more able to explain the relevant 
variability than those that are not. 

4 A good description explains by positing mechanisms that support 
interventions 

A good description is one which satisfies scientific goals. In cognitive and brain science, 
I take those goals to include explanation, prediction, and identification of mechanisms in 
order to reproduce and intervene in the complex behaviours of neurobiological systems.  
A good descriptive strategy will be applicable at many levels of fine-grainedness and be 
able to relate (i.e. unify) the relevant levels. 

4.1 Cognitive science aims at explaining and predicting behaviour 
Cognitive science has a focus on explaining the underpinnings of behaviour.  While the 
appropriate level at which such a description needs to be given has been a matter of much 
debate, the aim itself has not been.  As a result, any good description must be both 
explanatory and predictive of behaviour. 

4.2 Explanatory means mechanistic 
In the case of cognitive and brain sciences, useful explanations are those that appeal to 
subpersonal mechanisms.  This is because it is precisely such explanations which provide 
a basis for both intervention in behaviour and the artificial reproduction of those 
behaviours.  These mechanisms must be specific enough to allow for intervention.  That 
is, the mechanisms must be specified in a way that relates to the measurable and 
manipulable properties of the system. 

4.3 There are other definitions of ‘good’ 
Sections 3 and 4 are the antecedent of a conditional.  That is, if we take good descriptions 
to be of this nature, then we ought to employ control theoretical descriptions of brain 
function.  As such, there is no need to defend this as the best or only definition of ‘good’; 
and I intend not to.  Like any argument, the conclusion follows in so far as the antecedent 
is taken to be true.  Hopefully, this definition of ‘good’ is plain enough to be generally 
acceptable. 

5 Computational descriptions do not satisfy these criteria well 
Here I evaluate computational descriptions with respect to the previous criteria for 
determining what is a good quantitative description of brain function. I suggest that 
computational descriptions are not especially good.  This is only relevant if there is a 
better description.  In section 6, I argue that control theoretic descriptions are better. 



5.1 Mappings from data to computational states is complex 

5.1.1 Single cell models are more simply described as dynamical systems 
In short, this is because the brain does not functionally discretize well.  The earliest 
attempts to suggest possible discretizations include the McCulloch and Pitts (1943) 
model of the single cell.  Their mapping between logic gates and neurons was not 
intended to be physiologically plausible, and it clearly is not.  There have not been other 
serious attempts to do so.   

Perhaps the reason is that even if a state table were available for such a neuron, it is not 
informative as to the biological mechanisms that are described by that table.  While the 
information transfer characteristics of neurons suggests that about 1-3 bits of information 
is transferred per action potential (Reike et al., 1997), the relationship between input and 
output bits is not naturally described by a neuron model with discrete states and logic-like 
transitions.  Instead, the simplest neuron models take the form of dynamical descriptions 
(which can be ‘translated’ into computational ones, but become much more complex in 
so doing).  These descriptions have variables and parameters directly mapped to the 
physical properties of single cells, such as cell membrane capacitance, membrane 
resistance, and ion flux. 

5.1.2 Neural methods do not provide easily discretized data sets 
When we turn to other kinds of available data (than single cell spike trains), be it 
measured electrical properties of individual cells, or of large portions of cortex (EEG, 
fMRI, MEG), or of observable motor behaviour, the problem seems worse.  All of these 
kinds of data are generally analyzed as continuous signals, because discretizations are 
simply not apparent.  For instance, EEG and similar methods of measuring brain function 
are characterized as continuous signals using spectral and temporal decompositions of 
various kinds. 

Another candidate for discretized states is linguistic behaviour.  There are two problems 
with this level of characterization: 1) language has many ‘continuous’ kinds of 
phenomena mixed with words (which are more obviously finite), captured by prosody, 
pragmatics, etc.; 2) descriptions cast at the linguistic level do not provide us with the 
kinds of mechanistic descriptions demanded of useful explanations in cognitive science.  
Many such explanations seem clearly to demand reference to ‘sub-personal,’ non-
linguistic states. 
In both cases, lack of apparent natural discretizations makes for lack of apparently TM-
like state transitions.  Hence the underlying mechanisms are unlikely to be compactly-
described by TMs. 

5.2 Computational decompositions are not applicable to brains 

5.2.1 Computational architectures do not provide useful decompositions 
Computational descriptions would be useful if they imply a particular, good way to 
decompose the system.  TM theory perhaps provides the distinction between a tape 



(input/output) and transition table, but this not useful for decomposing the system itself.  
We must turn to other possible computational architectures for such suggestions.   

The most widespread computational decomposition is the von Neumann architecture.  
However, this architecture assumes that programs, describing the function of the system, 
are treated identically to the data on which such programs operate.  As a result, such 
programs can be moved from memory to the CPU and back again.  Brains do not share 
this flexibility.  Memory and programs/function are tightly intermixed, as in a typical 
connectionist network.  Despite some early attempts to map a von Neumann-like 
architecture to psychological descriptions of cognitive function (Atkinson & Shiffrin, 
1968), the mapping has not proven useful. Cortex is not divisible into ‘memory’ and 
‘processor’ as von Neumann architectures are.  
It has been suggested that brains are parallel computers.  However, parallel architectures 
exploit the same flexible memory usage, and so suffer from the same inability to map 
simply to brains. 

5.3 Computational descriptions do not account for variability 
Computational theory was developed in the context of ideal, non-stochastic state 
transitions and easily identifiable states.  Digital computers are carefully engineered to 
respect these assumptions, and this makes their behaviour predictable and repeatable.  
While there are recent developments that address the effects of stochasticity on 
computable functions, and it has been shown that this does not affect the computational 
power of the system, such extensions to TMs have not informed the construction of 
computers.  As a result, typical computational descriptions do not account for variability 
in the systems they describe. 

When describing real physical systems, variability – in short, noise – is inescapable.  
Brains are no exception to this rule.  The implementation independence of computational 
descriptions should make it unsurprising that they tend to be insensitive to 
implementational issues like noise. 

5.4 Computational descriptions do not satisfy the criteria 
Given the previous considerations, it should be clear in what sense computational 
descriptions do not satisfy the criteria for being good descriptions.  They do not provide 
useful mechanistic explanations and predictions of neurobiological behaviour.  This is a 
consequence of their not identifying the appropriate kinds of mechanisms to support 
intervention, which is a consequence of computational descriptions failing on the criteria 
as described in sections 5.1-5.3.  That is, if a description fails to 1) help decompose a 
system and 2) capture data through simple mechanisms (relative to a competitor), then 
the description cannot be used for prediction and intervention.  Hence, it is not good (or, 
more accurately, not as good as its competitor). 
I should note that the past successes of computational descriptions (e.g. ACT-R; SOAR, 
etc.) do not belie this point.  This is because the broader claim is that models relying on 
computational descriptions cannot provide the unity to descriptions of cognitive 
phenomena that is ultimately of interest.  They identify some mechanisms and 



interventions, but their descriptive assumptions will not capture the broad class of 
mechanisms and interventions of interest to cognitive scientists in general. 

5.5 Aside: Brains are ‘computers’ in some ways 
Notably, it is misleading to say that computational descriptions do not apply to brains, 
full stop.  Hopefully it is clear I am not claiming this.  To be clear I discuss here the ways 
in which brains do fall under computational descriptions, while not changing the overall 
conclusion that such descriptions are not good. 

5.5.1 Brains have TM descriptions 
Given previous considerations regarding noise, it is reasonable to claim that there is some 
TM description of brain function.  Notably, like all implementations of TMs, these will 
not be universal TMs (hence computationally as powerful as FSAs). 

5.5.2 This result is uninteresting both theoretically and practically 

5.5.2.1 Theoretically because of Kolmogorov 
Kolmogorov has shown two implementations of a given TM cannot be usefully 
considered equivalent unless they are almost identical (or unless one can assume infinite 
strings).  As a result, identifying a TM that is implemented by the brain does not tell you 
how to reproduce the described function in another implementational setting. 

5.5.2.2 Practically because such descriptions are too easy 
As Searle has pointed out at some length, TM descriptions of physical systems are 
ubiquitous (he suggests Microsoft Word could be implemented by a wall). I think 
Searle’s point is a bit misleading: it could be really difficult to figure out how to map 
states from a TM description of Word to microphysical states of my wall in the 
appropriate way.  However, when we do not know what the function is that is being 
computed, as in the case of the brain, we do not have any useful constraints on how to 
construct the TM description (i.e. we do not have a TM description already that is then 
mapped to the brain).  As a result, it becomes extremely easy to come up with some 
mapping or other.  We have no reason to believe such mapping is good, relevant, or in 
any way interesting. 

5.5.3 Continuity is irrelevant to the goodness of quantitative descriptions 
A number of authors have suggested that continuity is feature of brains that 
fundamentally distinguishes it from computers (see e.g., Churchland, 1995; van Gelder, 
1998; Piccinini, 2008).  In fact, it has been shown that analog computers are theoretically 
more powerful that TMs (Siegelmann, 1995).  However, this can only be shown 
theoretically, as it relies on complete access to the real number line.  Real machines, 
however, do not have such access if there is any expectation of computationally irrelevant 
disturbance (i.e. noise, no matter how small). Consequently, there is little use spilling ink 
over whether or not there is some TM description of brain function – there is.  However, 
what we are really interested in is a good description. 



6 Control theoretic descriptions are good descriptions 
Here, I argue that control theoretic descriptions are good descriptions of brain function at 
many scales.  Specifically, I consider descriptions of single neurons and networks of 
single neurons, up to and including those responsible for linguistic behaviour.   

6.1 Control descriptions provide simple mappings from data to control theory 
states 

By far the best mechanistic descriptions we currently have of single neural cells is as 
non-linear electrical circuits.  The circuits are naturally described by non-linear systems 
theory, the main mathematical tool of control theory. As a result, control theoretic states 
are already widely accepts as the simplest, most powerful descriptions of single neuron 
behaviour. 

As we compose single cells into larger networks, it is useful to adopt the language of 
representation and computation.  Eliasmith & Anderson (2003) propose the Neural 
Engineering Framework (NEF), a detailed theory of how neural systems can understood 
in these terms.  I will not review the three central principles of this approach here, but 
will note the following:  the third principle provides a direct mapping from the single cell 
data typically collected by neurophysiologists to control theory.  This mapping consists 
of a nonlinear encoding, determined directly from the data, and linear decoding that is 
optimal and mapped directly to the neurophysiology.  This low-level neurophysiological 
mapping allows for prediction of single cell and aggregate data.  In short, the mapping is 
simple between control theoretic states and many kinds of neural data.   

These methods have been successfully used for a wide variety of models including the 
barn owl auditory system (Fischer, 2005), the rodent navigation system (Conklin & 
Eliasmith, 2005), escape and swimming control in zebrafish (Kuo & Eliasmith, 2005), 
working memory systems (Singh & Eliasmith, 2006), the translational vestibular ocular 
reflex in monkeys (Eliasmith, Westover, & Anderson, 2002), and context sensitive 
linguistic inference (Eliasmith, 2005).  This variety suggests the mapping is a useful one 
for positing and testing neural mechanisms. 

6.2 Control descriptions provide a useful decomposition 

6.2.1 Control descriptions distinguish plants and controllers 
The central decomposition employed by control descriptions is that between a controller 
and a plant.  While both are described by dynamical systems theory, the controller is 
taken to be a part of the system that varies the input to a plant, in order to achieve a 
desired state (provided to the controller).   

6.2.2 Motor and perceptual systems decompose well as controllers and 
plants 
Peripheral neural motor systems act like controller for the body as a plant.  That is, these 
systems determine the details of muscle contractions given higher level specifications of 
motor actions.  More precisely, there is evidence for a hierarchy of such interactions in 



the motor system (Grafton & Hamilton, 2007).  So, this decomposition maps in a 
straightforward way onto our current understanding of motor control.  In addition, in 
closed-loop control, controllers are taken to have sensors that feedback the state of the 
plant, allowing the controller to be more sophisticated.  This maps well onto the role of 
the many perceptual systems found in the brain.  These systems can be naturally thought 
of as similarly organized (though dual) to the motor hierarchy (Todorov, 2006).    

6.2.3 Neural systems are appropriately described as (hierarchical) directed 
dynamical systems 
As a result, the means of decomposing systems is useful for understanding the kinds of 
‘hierarchies’ observed in the brain.  That is, a nested control theoretic description of plant 
dynamics directed by feedback controllers, at least in that broad outline, seems 
appropriate to describing neural function.  Furthermore, this decomposition does some 
justice to the massively interconnected nature of perceptual and motor systems.  It is clear 
that we cannot yet be certain of the most appropriate decomposition of neural systems, 
but preliminary evidence suggests ideas from control theory may help construct just such 
a decomposition. 

6.3 Control descriptions incorporate variability 
Control theory was developed to describe physical systems.  As a result, including noise, 
and optimizing controllers in the face of noise is a long-standing part of control theory.  
That is, both the analytic and synthetic aspects of control theory naturally deal with 
variability.  This suggests such descriptions are appropriate for noisy systems like the 
brain.  Notably, the NEF has noise as a core concern, and has been used to quantify the 
relationship between noise (and other variability) and neural properties in detail 
(Eliasmith & Anderson, 2003). 

7 Control theoretic descriptions are the best quantitative 
descriptions 

This section is dedicated to a brief comparison of control theoretic descriptions with each 
of the other three candidates. 

7.1 Comparisons to computational descriptions 
It is important to emphasize that, compared to computational descriptions, control 
theoretic ones unify our description of phenomena of interest to cognitive scientists.  For 
instance, working memory and navigation, are typical ‘cognitive’ phenomena.  However, 
locomotion and reflexes are more typical ‘sensory-motor’ kinds of phenomena.  Control 
theory applies well to all of these.  And, to allay concerns that such descriptions do not 
apply to ‘higher’ cognitive phenomena, the BioSLIE model presented in Eliasmith (2005) 
is a crucial existence proof of the utility of control theoretic descriptions of linguistic, 
inference tasks.  More generally, this model demonstrates syntactic generalization, and 
makes predictions regarding learning history and response times in a cognitive task (the 
Wason card task).  The details of this approach are beyond the scope of the present 
discussion (see Stewart & Eliasmith (in press) for a description). 



Thus, while computational descriptions are in principle poorly applicable to neuron level 
descriptions, control theoretic descriptions are in fact good for cognitive level 
descriptions.  Furthermore, it is not simply the case that control theory as discussed here 
is more specific that computational descriptions.  For instance, if we consider Newell’s 
SOAR architecture, which is much more specific, it clearly suffers from the same 
decomposition difficulties.  In fact, we do not need to move beyond its computational 
roots to see why the decomposition is a poor one.  The distinction between program and 
memory and the lack of a systematic relationship to neural hardware already suggest 
(despite the additional specificity) that SOAR will fail given our stated criteria.  This is 
not to deny the clear success of SOAR, rather it is to suggest that, in the long run, those 
successes will not withstand deeper theoretical failings. 
In sum, control theoretic descriptions more effectively meet each of the criteria for good 
quantitative descriptions of neural systems than computational descriptions.   
These differences are in large part due to the fact that computational theory is designed to 
be implementation independent, whereas control theory is designed to be implementation 
sensitive.  The physical systems that computational theory best applies to are carefully 
engineered.  The physical systems analyzed using control theory are not.  The brain, of 
course, falls into this latter category.   Hence, it should not be surprising that control 
theory is in a better position to describe neural mechanisms in a manner more useful to 
cognitive science than the descriptions offered by computational theory.  

7.2 Comparisons to dynamical descriptions 

7.2.1 DST dynamics is divorced from implementation 
A consequence of the DST insistence on the use of lumped parameters is precisely that 
such models become extremely difficult to compare to a vast majority of neural data.  
There is no standard way to map lumped parameters to physically manipulable 
parameters of the system (usually only observable behaviour is mapped to the model).  
As a result, there are no constraints on what might or might not be ‘lumped’ in such 
models.  Hence no standard decomposition strategy is available.   
As well, in general, such a mapping is not suggested for specific models either, hence the 
mechanisms underwriting the observed dynamics in each case is not only ad hoc, but 
obscure.  So, despite sharing a mathematical heritage with control theory, such 
descriptions are not as appropriate. 

7.2.2 Mechanisms are abstract 
A related consequence of lumped parameters is that the mechanisms described are highly 
abstract.  That is, to the extent there are mechanisms, there is no mapping to the internal 
physical states of the system, hence methods of interacting with the system are not 
evident from such models.  Without being able to predict the effects of interventions, the 
models become much less useful to the brain sciences. 



7.3 Comparisons to statistical descriptions 
Statistical descriptions are probably less familiar to philosophers of science and 
philosophers of mind than the other competitors.  For that reason, let us briefly consider 
an example of a statistical model in explaining behaviour.  It is often the case the 
perceived motion of some object is influenced by surrounding information (e.g. contrast).  
This effect, called the ‘Thompson’ effect (which explains why people tend to drive faster 
in the fog), was the target of a modelling effort by Stocker and Simoncelli (2006).  In this 
work, they developed a method for determining what the nature of the bias that leads 
people to make these mistaken judgments is.  Essentially, they derived a method for 
determining what individual’s prior probability was for velocities, based on their 
performance on a behavioural experiment.  They then demonstrated that this inferred 
prior did a good job of predicting the subject’s performance under a wide variety of 
motion estimation tasks.  Notably, this model is very good a predicting the subject’s 
performance, but it has little to say about the mechanism underlying that performance.  

7.3.1 Statistical descriptions do not provide decompositions or mechanisms 
The implementation independence of statistical descriptions has similar consequences for 
such descriptions as for computational ones, though for slightly different reasons.  
Statistical descriptions have a clear mapping to the data, as they are usually direct 
descriptions of the properties of the data.  Indeed such a mapping can vary from 
experiment to experiment, making the mappings not systematic, and hence not suggesting 
unifying underlying mechanisms.  Indeed, such descriptions are often used specifically 
when mechanisms are least clear.   
As well, such descriptions do not provide any suggested decompositions.  Statistical 
models typical directly adopt any decomposition assumptions from the methods used to 
collect the data.  Hence they do not drive such decompositions, as would be desirable. 

7.3.2 Statistical descriptions are predictive but not explanatory 
The ‘data-focused’ nature of statistical models is both their strength and their weakness.  
Because statistical descriptions are most concerned with capturing regularities in the data, 
they are often very useful for prediction. While this is appropriate for some purposes, it 
does not suit what I take to be the main goal of cognitive science: explaining how neural 
systems work.  As discussed in section 3.1, without identifying mechanisms, descriptions 
will not be explanatory, not support intervention and hence not be useful. 

8 If we want a good description of brain function, we ought to 
adopt a control theoretic approach 

So, how we ought to describe computation in the brain is not as computational theory 
would demand.  Instead, if we let pragmatic considerations drive our descriptions (as we 
must, otherwise we cannot choose), control theoretic descriptions are most promising for 
advancing our understanding of neural systems.   
Recall the clarification of this conclusion: it does not rule out the other descriptions as 
useful.  Rather, it suggests that other descriptions are essentially heuristics for stating the 



description in a control theoretic manner.  In many cases, there are equivalent 
formulations of a given model in these purportedly different approaches.  However, 
control theoretic descriptions should be primary, and hence the goal of providing good, 
useful descriptions of brain function. 
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